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Abstract

Socially assistive robots are envisioned to be deployed in unstructured
environments among humans for a variety of applications such as health-
related behavior change interventions. A critical property that such robots
should have is the ability to adapt to their users’ behaviors and needs.
To enable practically applicable user adaptation, an efficient approach to
learn useful representations of human behaviors and routines is necessary.
Building on a case study of opportunistic interventions in a health-related
decision-making task, the work presented in this manuscript demonstrates
how a mobile home robot can be useful in delivering in-situ health inter-
ventions and what some of the challenges entailing real-world deployment
of such systems are. Following findings and observations from two user
studies, this manuscript presents a solution based on human routine be-
havior modeling that is designed to be generalizable to a variety of differ-
ent task domains by leveraging spatiotemporal context for opportunistic
human-robot engagement. Using a probabilistic model based on Gaus-
sian processes, the proposed work attempts to functionalize this solution
in an automated system that actively tracks, models, and predicts routine
movement patterns and object interactions of individuals in an unstruc-
tured environment with the goal of making it practically possible to make
sure that an assistive robot can be in the right place at the right time in
a novel user’s environment using minimal amount of data.
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1 Introduction

Machines are coming into our lives in a variety of forms, including voice agents
[60, 58, 83], screen agents [6, 78], chatbots [84, 91], social robots [107, 125],
collaborative industrial robots [61], and commercial robots [62, 59], fulfilling
the roles of personal assistants, workmates, and even sports coaches [137, 34,
119]. Among possibly the most sought-after variety in this scope of machines
are Socially Assistive Robots (SAR, [35]), which are envisioned as interactive
companions rather than mere assistants. SARs have the potential to be deployed
in dwelling environments to support humans in a variety of tasks, and this thesis
investigates facilitation of SARs in health behavior change and habit formation.

Arguably the most prominent utility a SAR offers is the potential to proac-
tively engage with humans at the time and place an intervention opportunity
emerges. Facilitated by the robot’s mobility and strengthened by proxemics and
facial and deictic gestures, engaging with humans in their social zone has been
shown to be more effective in persuading humans toward behavior change com-
pared to stationary platforms [123, 124]. Such interactions–referred to as oppor-
tunistic interventions henceforth–are highly valuable as they can assist healthy
habit formations, which requires making contextual connections between be-
haviors and external stimuli [37, 79]. However, cues such as preprogrammed
reminders from a mobile phone application do not necessarily facilitate these
connections since habitual context is highly dependent on environmental cues
such as time of day, the physical environment the human is in, and leading
and/or preceding activities [144, 113, 3]. In this sense, it can be argued that
a proactive SAR with some ability to retain contextual connections between
environmental cues and its user’s behaviors, can help reform or refine the user’s
habitual behaviors. Moreover, by highlighting new or better contextual connec-
tions in the correct time and place a target behavior is about to be employed
by the user, such a robot can help create new habits by serving the role of a
mediator between the user and their environment. This requires a SAR to be
aware of at least a subset of necessary cues within the context space which trig-
ger the target behaviors for the user, and able to situate itself within this space
for effective reformation of stimulus control [99].

One major obstacle in the way of achieving effective opportunistic interven-
tions using SARs, and the initial inspiration and motivation behind the work
presented in this manuscript, is these platforms’ lack of sufficient agility in nav-
igation and locomotion. As an example, it takes about one minute for a Pepper
robot (Figure 1, [107]) to navigate autonomously into the social zone ([45]) of
a human three meters away–a task which can be completed in a matter of a
couple seconds by a human. This is due to practical issues such as the environ-
ment being unstructured and prone to changes, the mapping and localization
being imperfect and prone to errors, and other limiting factors due to safety con-
straints. Such a delay means that by the time the SAR makes it to the human,
the opportunity window of contextual coherence to deliver an in-place interven-
tion regarding the human’s activity is likely missed. Thus, in order for a SAR
to be able to locate itself within this window, it either needs to inherit human-
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level locomotion agility, which the state-of-the-art social robots do not offer yet;
or inherit prediction capabilities so that it can position itself preemptively and
wait for this window to form around itself. Such a predictive robot can, for
example, predict a human is going to take an action that it wants to intervene
in (e.g., unhealthy snacking) in a relatively distant future (e.g., five minutes
into starting watching TV ), and preemptively position itself in a contextually
coherent position (e.g., kitchen) to cue for behavior change (e.g., recommend
apples instead of chips) when the human eventually enters the opportunity win-
dow (e.g., enter the kitchen to grab snacks five minutes after starting watching
TV ). Notice here that the desiderata for such a robot quickly extends beyond
the ability to compensate for its inferior agility, and starts entailing the ability
to untangle underlying structures of human activity chains effectively.

Beyond the technical shortcomings due to locomotion and navigation, which
are likely to become much less limiting in the near future, proactivity–the abil-
ity to take actions without receiving explicit commands–itself is an integral
component of fluent human-robot interactions (HRI). Human domestic part-
ners create and retain mental models for causal chains governing their partners’
actions, habits, and routines. Using these models, humans can make predic-
tions and assumptions regarding current or future actions of their partners and
shape their own actions accordingly [130, 70]. This level of understanding signif-
icantly reduces the cognitive labor due to repeated communication of otherwise
redundant information, and (usually) enables a highly harmonious interaction
between partners and is foundational for a fluent relationship. Similar proac-
tive abilities have been shown to be preferred over repeatedly giving explicit
commands to robots in human-robot interactions as well [43, 44, 92, 96].

The state-of-the-art and future directions in robotics as well as the knowledge
base in social sciences raise several interesting research questions and technical
challenges for the future SARs. The work presented in this thesis aims to address
some of these questions and challenges by focusing on just-in-time health inter-
ventions using SARs: Primarily the problem of predicting human activities with
the goal of enabling opportunistic interventions through proactive engagement
and providing context-sensitive advice at the time and place a human makes
a health-related decision. To functionalize such a proactive robot, a model of
causal human routine behaviors is necessary and likely sufficient. Considering
that the context space for each human incorporates a high variability due to dif-
ferences in the environments, behavioral routines, and intervention goals, this
modeling problem is effectively a user-adaptation problem, which is yet another
open challenge in the literature. Solution attempts to such modeling and adap-
tation problem leverage deep networks, which are extremely data hungry and
unlikely to be useful using a single person’s data in a feasible amount of training
time. Some other approaches leverage underlying dynamics of the system (such
as of a car) in predicting behavioral (driving) trajectories. However, the dynam-
ics of a human is not solely governed by physical constraints but also driven by
the intentional stance [30], which is non-trivial to formulate. Even if such mod-
els were available, state-of-the-art trajectory prediction algorithms typically can
only predict up to several seconds, which is insufficient to compensate for the
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agility mismatch between a robot and a human in an unstructured environment.
Such short prediction horizons are also not sufficient for longitudinal prediction
requirements of human-robot co-habitation.

Taking dietary interventions of a hypothetical home robot as an initial case
study for deploying SARs in real-life amongst humans with the overarching
goal of enabling effective human behavior modeling for a variety of tasks and
task domains, the work proposed in this thesis aims to address the following
questions:

• Spatiotemporal Causality: What kind of a (probabilistic) model can
retain sufficient spatiotemporal information and provide continuous-time
causal models for fluent human-robot interaction?

• Proactivity: How can such a model be useful in mitigating the shortcom-
ings of a SAR in an unstructured environment by acting pre-emptively?

• Adaptability: What kind of model can be useful within a practically
reasonable amount of time and data requirements for individuals with
presumably significant differences between their behavioral routines and
environments?

• Generalizability: Can such a model be practically and effectively gen-
eralized to different task domains?

To address these questions, a modular opportunistic intervention framework
and a Gaussian process-based behavior modeling approach are proposed and
discussed towards the end of this manuscript. Moreover, demonstrations of the
utility of the proposed approach are provided through findings from a human
subjects study along with a discussion of possible shortcomings of the approach
and their possible solutions.

2 Related work

2.1 Behavior Modeling

Interactive intelligent machines are becoming widespread and have been taking
on variety of tasks in different forms such as social robots, collaborative robots,
virtual wellness coaches, chatbots, voice assistants, robotic vacuum cleaners,
targeted advertisement systems, and content recommendation engines. Even
though being inarguably distinct in nature, all of these machines are envisioned
to be capable of tackling task variations on different levels. These include, but
are not limited to, variations in individual user preferences as well as popula-
tion preferences. Such variations necessitate adaptive machines through scalable
and generalizable algorithms. In a human-centered computing perspective, this
challenge is typically approached by finding meaningful and hopefully reusable
representations of human behavior, and tying them together as causal chains
of events to create models of human behavior, which can then be utilized to
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classify, predict, or simulate human activities [136]. The most common of these
approaches make use of parametric and non-parametric models, probabilistic
methods, dynamics, machine learning, mathematical models of neurological pro-
cesses and psychology; and span a wide range of applications such as depression
detection from biosignal trajectories and robot learning from demonstrations.

Zhang et al. [144] used computational behavioral models of habit forming
and habit strength in a real-world user study focusing on behavior change sup-
port systems, investigating dental hygiene as a case study. Using the data col-
lected from sensors attached to participants’ toothbrushes, they have shown that
theory-based mathematical models of habit formation can explain and predict
habit strength and health behavior change better than self-reported measures
collected from the participants. In another study, Klein et al. [75] have studied
computational models of habitual behavior leveraging neurology literature and
proposed a formalism based on Temporal Trace Language to model habitual
behavior change mechanisms. They validated their model through simulations
generated by their model. In [2], Baker et al. have shown how Bayesian models
can be used to reproduce reasoning and prediction patterns from developmental
psychology and intentional stance ([30]) perspectives. Through a human sub-
jects experiment on a “sprite world” domain, they have shown that such models
can successfully model observed human intentional reasoning behavior.

Earlier work by Magnusson [86] introduced a definition of temporal patterns–
T-patterns–which represent behavioral patterns in time series data, and further,
proposed an algorithm for these patterns’ detection. Building on this framework,
Brdiczka et al. [10] demonstrated how T-patterns can be leveraged to model
routine behaviors of office workers. Wang et al. [133] proposed an extension to
Topic Models, transforming them from a bag-of-words approach to n-grams to
have contextually coherent clusters of topics in language modeling. Their work
inspired further behavior modeling work such as [56]. In this study, Huynh et al.
leveraged Topic models to automatically extract activity patterns that model
routine behaviors in a generalizable way. Using data from wearable sensors, they
modeled daily routine behaviors of elderly in home settings and office workers
in their work environment. They have shown that such an approach can be
used to represent routines as combinations of activity patterns, and can still be
useful without annotated data.

There are several studies in the recent literature that leveraged a frame-
work of Bayesian networks, Inverse Reinforcement Learning (IRL, [102]), and
Maximum Causal Entropy algorithm ([147, 145]) to learn and model human
behavior. Banovic et al. [3] used this framework to capture causal relationships
that define humans’ routine behavior. They used existing activity prediction
algorithms and proposed an extension to these that offer a more generalizable
framework for causal routine prediction. They tested their approach on model-
ing the differences and predicting the behavior of aggressive and non-aggressive
drivers. Ziebart et al. [146] used IRL to model driver behavior on public roads,
and have shown how such a model can be used to predict human behavior in
a causal manner. In [104], Reddy et al. have shown how this framework can
be used to learn and refine beliefs of users’ understanding of their environment.
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They used a navigation task in a grid world domain and the Lunar Lander game
([13]) to show that their approach can successfully model user beliefs, and pro-
vide user-adapted corrective signals to improve their performance in the game
significantly. In a recent study, Hossain et al. [54] used a similar IRL frame-
work to infer if a certain dataset is sufficiently large to model certain human
behavior. They have demonstrated the functionality of their approach in a case
study using data from people with Multiple Sclerosis.

Parametric models, i.e., models that attempt to represent and generalize
observed data with a (small) set of parameters, have been in the literature for a
long while. In their work [51], Helbing and Molnár have shown how pedestrian
trajectories can be modeled and predicted with great accuracy using their Social
Force Model. Further, building on the seminal work of Kalman and Bucy [68]
to improve the capabilities of Hidden Markov Models (HMMs) in characterizing
human behavior, Pentland and Liu [97] proposed a method to combine a (para-
metric) dynamics model with a (stochastic) Markov Chain to model and predict
human behavior. They tested their approach in predicting driver trajectories
a few seconds into the future from their preparatory actions. In a more recent
work, Wiest et al. [134] leveraged Chebyshev polynomials to reduce state-space
complexity and predict driver trajectories through probabilistic inference us-
ing Gaussian Mixture Models (GMMs). They used past trajectory snippets
to predict the driver trajectory a few seconds into the future, and discussed
how such models can be useful for improving driver assistance systems to im-
prove traffic safety. More recently, Deng and Söffker [29] used layered HMMs to
model and predict driver lane-change behavior, and used a genetic sorting algo-
rithm to find optimal model parameters. They have shown that this approach
outperformed other baseline machine learning methods such as artificial neural
networks and support vector machines. Drawing on the observation that most
context-sensitive information to model human behavior is in the form of time
series data (e.g., trajectories, biosignals) and most probabilistic models work
on discrete data, Bobu et al. [7] revisited discrete probabilistic models to make
them better applicable to continuous domains. Building on the literature in
Boltzmann noisily-rational decision models and Luce’s choice axiom ([85]), they
proposed a method to cluster time series trajectories and formulations to have
these clusters inform probabilistic models. They show that their representation
outperforms conventional models in modeling observed human behavior in two
human subjects studies.

Emphasizing the shortcomings of parametric modeling such as their inflex-
ibility to data variations and laborious parameter estimation, Sun et al. [118]
proposed a non-parametric Bayesian method to discover routine human behav-
iors which is based on Dirichlet Process Gaussian Mixture Models and Hierar-
chical Dirichlet Processes. As case studies to show that their approach outper-
forms a more conventional parametric method, they made use of a daily human
activity dataset that incorporates atomic and composite actions as well as wear-
able sensor readings (e.g., accelerometer), and a transportation mode dataset
which incorporates longitudinal position trajectories which are annotated with
the associated transportation methods the participants used. Ellis et al. [32]
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proposed a non-parametric long-term trajectory prediction method based on
Gaussian process regression. Using their clustering algorithm on surveillance
camera footage, they successfully created models of pedestrian trajectories in
public settings, and highlighted the scalability issues non-parametric methods
are likely to suffer. There is a large body of literature on human trajectory pre-
diction some of which is summarized by Rudenko et al. in their survey paper
[109] covering both parametric and non-parametric approaches.

In their recent work, Xu et al. [142] drew attention to generalization dif-
ficulties in human behavior modeling research which stem from variations in
data both within- and across-population. They propose a clustering and a sam-
pling algorithm in an attempt to tackle the challenge of generalization across
datasets. They verify their approach in comparison with several other methods
from prior work using a 4-year-worth longitudinal passive dataset they collected
using mobile devices and wearables to detect depression. They publish the al-
gorithms they developed as well as the baseline algorithms on a benchmarking
platform for other researchers to make use of. In their earlier work [141], Xu et
al. have shown how human routine behaviors could be extracted from passive
multi-modal sensor data such as nearby Bluetooth devices, location, charging
state etc. and this data could be used for depression detection using Associa-
tion Rule Mining method. In their work [98], Pierson et al. also made use of
a clustering-based method and proposed Cyclic HMMs to featurize cycles, rec-
ognize feature variability in cycles, and cluster similar groups with the goal of
tracking menstrual cycles. They have shown that their method is robust against
missing data and their model can extract new (health-related) information, even
when the specific information was not explicitly collected from the donors.

Other example use cases from human behavior modeling can be found in
commerce. In their work, Yanchenko et al. [143] demonstrated how targeted
discounts and modeling customer behavior can be leveraged to optimize profit
in a scalable way. Using Bayesian Dynamic Mixture Models, they model the
purchasing trends based on the spending characteristics of different household
groups at the individual buyer and also individual item level to do forecasting.
In another work to improve service quality, Kanda et al. [69] used a cluster-
ing algorithm to classify individuals around a shop, and predict their motions
a few seconds into the future to decide whether they are potential customers
or passerby. Deploying their algorithm on a mobile humanoid robot, they ap-
proached and invited the potential customers into their shop, and showed that
with this anticipatory behavior, they were able to increase the services they
have provided with the robot. Focusing on building automation systems in res-
idences, Bruckner and Velik [15] used HMMs and data collected from proximity
sensors placed in an office environment to model routine activities within the
office. They have shown how unannotated data can still bear useful represen-
tations of routine data in such environments. In their work [63], Jahanmahin
et al. surveyed the literature on human behavior modeling for human-robot
interactive manufacturing.

Observing the difficulty of collecting real-life behavioral data, especially from
dwelling environments, some studies in the literature focused on synthesizing be-
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havioral data by using generative behavioral models. Puig et al. [101], collected
a dataset of household activities from participants through Amazon Mechanical
Turk. The participants composed the prompted activities using a user-friendly
drag-and-drop programming interface with atomic actions. Using these atomic
action sequences, video sequences, and language descriptions with a variety of
machine learning techniques, they generate a “program” that encapsulates the
relations between these modalities and final activities. They also developed a
home simulation environment, animated atomic behaviors, and deployed this
program on this simulation environment to successfully synthesize household
behaviors from prompts. Idrees et al. [57] proposed a framework for daily
human activity simulation to help generate data for research and development
of product testing for home robots (e.g., Amazon Astro). They used behav-
ioral data from three publicly available household activity datasets, and applied
their data augmentation algorithm, which is constraint- and heuristic-based, to
add variations and noise to the readily available activity schedules. They show
that the generated schedules are similar to the schedules in the training set
using a distance metric. Elbayoudi et al. [31] focused similarly on household
data scarcity, and proposed an algorithm to synthesize daily routine behaviors
of older adults. Their training data was composed of timestamps, occupancy,
and movement activities within the house. Using HMMs and Direct Simula-
tion Monte Carlo methods, they have shown that their simulator can generate
behavior similar to the data in the training set.

This body of literature draws attention to the significance of human behav-
ior modeling in a vast pool of application areas such as behavior change, elderly
care, driver assistance systems, and commercial market. The studies show prob-
abilistic models, machine learning, system dynamics, and formalisms on routine
and/or habitual behavior can be effective tools for approaching this modeling
task. The primary open challenges in behavior modeling literature entail the
difficulties around generalization of the proposed models and personalization of
the modeled behavior due to data scarcity. Majority of the studies in the field
rely on domain-specific information, datasets, and heuristics, which restricts the
applicability of the approaches and, thus, their generalizability. The trajectory
prediction methods typically can only predict up to a few seconds into the future,
or they rely on clustering tools which require further domain-specific informa-
tion. The work proposed in this manuscript primarily aims to address these
shortcomings of the models in the literature regarding generalization and per-
sonalization, and offer a method that does not rely on domain-specific heuristics
to achieve long-horizon behavior prediction.

2.2 Persuasive Robotics

Persuasion, in relation to persuasive computing, is defined by Fogg [36] as “an
attempt to shape, reinforce, or change behaviors, feelings, or thoughts about
an issue, object, or action.” Persuasiveness has been shown to be an important
social process that facilitates social influence, cooperation, and attitude changes
[103, 148]. Persuasive robotics requires an understanding of how persuasion in
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human-human interactions translates to human-robot interactions [11]. There
is now a large body of literature on persuasive computing [36] in general and
persuasive robotics [115] in particular. Several studies in the literature have
investigated verbal and nonverbal strategies that robots can use to persuade
users.

Leveraging the Elaboration Likelihood Model (ELM) [19, 94], an established
model of persuasion in human-human interaction, Winkle et al. [138] evaluated
the strategies of goodwill, similarity, and credibility on health behavior com-
pliance, in having participants perform a simple wrist rotation exercise. This
study also explored the use of the expert strategy from the credibility peripheral
cue of the ELM, which establishes the persuader (in this case the robot) as an
authority on the subject matter for which persuasion is required.

Ham et al. [47, 46] studied robot persuasion to improve attitudes toward
energy conservation. They found that social feedback was better than factual
feedback and negative feedback was better than positive feedback to elicit be-
havior change. By using negative feedback and robot proxemics, they were able
to create a sense of urgency and persuade users to take remedial action.

Rincon et al. [106] designed a social robot, EmIR, for assisting older adults in
their daily activities. The authors used three argumentation strategies, namely
analogy, popular practice, and expert opinion, to persuade users to do activities
using a framework proposed by Costa et al. [27]. This framework leveraged
users’ interests and preferences to generate tailored persuasive strategies, which
enabled the EmIR robot to use proxemics to persuade older adults to engage in
activities that they might not have considered otherwise.

Ghazali et al. [39] demonstrated that apparent gender congruence between
user and robot may lead to persuasion, but not necessarily improve the trust
between them. On the other hand, Siegel and Breazeal [115] showed that male
users were more likely to donate money to a female robot compared to a male
robot, while female users demonstrated no preference. They have also shown
that participants found robots of the opposite sex more credible, trustworthy,
and engaging.

Hashemian et al. [49] explored social power and persuasion in HRI. Two
humanoid robots each of whom employed a different social power strategy to
encourage participants to pick one of three different coffee packs. One robot used
a reward strategy and the other established itself as a coffee expert to do so.
Both approaches were found to be equally persuasive. They also demonstrated
that the relationship between social power and persuasion is not linear and that
repeated persuasion attempts do not decay the perceived value of the rewards
when rewards are used as the social power strategy [48].

Herse et al. [53] explored how different embodiment types influence per-
suasion in recommendation systems. Through a vignette study, they compared
persuasion across two recommendation statements: one related to the atmo-
sphere and one about the staff; and three hypothetical embodiment types: hu-
man, robot, and information kiosk, which aimed to persuade the participants
to choose one of two restaurant options. They found that using a human em-
bodiment for recommendation is better than using a robot or information kiosk.
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However, this finding was only significant in the case of one statement which
spoke about the good atmosphere at the restaurant. They also used cartoon
icons to depict each embodiment which may have affected the participants’ per-
ception of the recommender.

One study by Ju and Sirkin [67] explored the use of a waving robotic hand
as a mechanism for attracting the attention of people passing by a public kiosk.
The study found that the physicality of the robot was a powerful tool for per-
suasion, as the waving hand was more effective in engaging participants with the
kiosk than an animated hand on a display. This demonstrates the potential of
proxemics as a powerful mode of persuasion in public spaces, where robots can
use physical gestures to draw people’s attention and engage them in interaction.

Another study by Chidambaram et al. [23] explored how manipulations in
a robot’s nonverbal cues affected participants’ perceptions of its persuasiveness
and compliance with suggestions. The study found that nonverbal cues, includ-
ing deictic and metaphorical gestures, were effective at persuading participants
when combined with speech cues.

These studies demonstrate that behavioral theories on human-human per-
suasion can be transferred to human-robot interactions. Moreover, they high-
light the importance of robot embodiment, form factor, and role-setting on
the effectiveness of persuasion. Additionally, they show that proxemics can
be a powerful mode of persuasion, and by combining proxemics with physical
gestures, spatial cues, and other nonverbal cues, robots can create persuasive
messages that engage users and encourage behavior change.

2.3 Proxemics and Nonverbal Behavior

There are several kinds of communication behavior categorized under nonverbal
behavior that are studied extensively in social human-robot interaction [110].
Proxemics is one of the branches of nonverbal communication that examines the
use and interpretation of physical space in interpersonal interactions. Research
on proxemics has extended to human-robot interactions, investigating how prox-
emic behavior affects humans’ perceptions of and experiences with robots. Kim
and Mutlu [74] explored the effects of social distance on user experience by ma-
nipulating the physical proximity, organizational status, and task structure of
a humanoid robot interacting with participants. They found that participants
had a better experience performing a task when the robot was established as a
supervisor and it was physically closer to the participant. According to further
studies by Walters et al. [132], Koay et al. [76], and Mumm and Mutlu [90],
factors such as distance and likability can affect people’s attitude and behavior
toward robots.

Other studies investigated how user gender and cultural background, and
robot appearance and voice can affect proxemic behavior. Obaid et al. [93] did
not find a significant effect of gender on human-robot proxemics (HRP), and
Eresha et al. [33] found a significant effect of culture on HRP. In terms of robot
appearance, the study by Samarakoon et al. [111] found that participants’ pre-
ferred interaction distance with a manipulator robot was significantly less than
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it was with other robots. Terzioğlu et al. [122] have shown that gaze cues can be
leveraged to increase collaborator rapport with an industrial manipulator. The
degree of anthropomorphic attribution is linked to higher expectations from the
robot in terms of proxemics norms, according to Syrdal et al. [121]. The study
by Walters et al. [131] suggests that a synthesized voice leads participants to
stand significantly closer to the robot compared to a robot with a natural voice
or no voice.

Mead and Mataric [87, 88] investigated how robot task performance affects
humans’ perception of robots’ competence, anthropomorphism, engagement,
and likability. The study found that minimum and average robot performance
levels were correlated with how humans perceived the robot’s competence, an-
thropomorphism, and engagement, while the maximum performance level was
not. However, likability was significantly correlated with all three levels of per-
formance. Papadopoulos et al. [95] explored the effects of proxemic positioning
on engagement and collaboration in a memory task. They found that partici-
pants were more engaged with and had higher preferences for a NAO robot in
a frontal position compared to a lateral position. Additionally, a robot with
helpful speech behavior was found more engaging and preferable compared to a
robot with neutral behavior.

Siegel [114] examined the effects of social distance on donation behavior
towards a Mobile Dexterous Social humanoid-torso robot. The study found that
male participants donated more in a ‘close’ condition (75 cm distance) than in a
‘normal’ condition (1.5 m distance), while female participants donated more in
the ‘normal’ condition compared to the ‘close’ condition. Syrdal [120] explored
the role of spatial behaviors in building human-robot relationships. Overall, the
findings suggest that physical interactions play an important role in building a
relationship between a domestic robot and a user, even when comparing robots
with similar interaction capabilities. Participants reported feeling closer to the
mobile robot and rated it as more likable than the stationary robot, suggesting
the importance of negotiating shared physical space in real-time.

These studies indicate how robot proxemics and nonverbal behavior in com-
bination with robot features such as form factor and voice can be manipulated
to positively affect the attitude towards and also help shape expectations from
the robot.

2.4 Robot Persuasion through Nonverbal Behavior

Persuasion has also been shown to be affected by an individual’s use of nonver-
bal cues such as gaze and proximity [105]. Nonverbal behaviors such as gaze,
proximity, gestures, posture, and facial expressions; and verbal behaviors such
as vocal tone, and expressions can also shape nonverbal immediacy, the degree
to which someone feels connected to another, which is closely related to persua-
sive ability [89]. Joint activity, for example, which requires coordinated efforts
from two or more partners, shows that nonverbal signaling is especially impor-
tant as means of directing attention to particular objects or regions. Gaze has
also been shown to have some influence on joint activity tasks such as deciding
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between two choices [20]. Ju and Sirkin [67] explored the use of different mech-
anisms to attract the attention of people passing by a public kiosk. They found
that the use of a waving robotic hand was better at persuading participants to
engage with the kiosk compared to an animated hand on a display, demonstrat-
ing the enhanced persuasive ability of physicality in robots. Ham et al. [47]
demonstrated that persuasion was increased when a robot used a combination
of both gazing and gesturing in a storytelling task. Nonverbal behaviors have
also been shown to be effective in improving the retention rates of participants
in a storytelling-based task where robots used different kinds of iconic gestures
(or not) [129].

Ghazali et al. [41] investigated the use of social cues as persuasion strategies.
In a series of studies, they looked at how cues such as mimicry, praise, as well as
emotional intonation, head movements, and facial expressions, can be used to
persuade people to change their choices in trivial tasks. However, these studies
relied on robot speech as the primary modality for persuasion, and did not
investigate the persuasive effect of nonverbal behavior in isolation [41, 40].

Chidambaram et al. [23] explored how manipulations in the use of a robot’s
nonverbal cues (with and without the addition of speech cues) affected the
participants’ perceptions of the robot’s persuasiveness and compliance with the
robot’s suggestions. Participants performed the Desert Survival Task [80] on
a computer with a robot providing suggestions using a combination of verbal
and nonverbal cues. The gestures used by the robot included pointing (deictic)
gestures to reference itself and the participant, metaphorical gestures, to show
a space containing an idea, and other kinds of gestures where appropriate. The
study demonstrated that nonverbal signaling outperformed having no signals;
and that nonverbal cues were effective only when combined with speech cues.

These studies suggest that nonverbal behavior can be an effective tool for
persuasion in human-robot interactions and encouraging behavior change. Over-
all, the body of research on proxemics, nonverbal behavior, and robot persuasion
supports our claims and findings (Section 3) regarding the use of robot mobility
as a facilitator of proxemics and robotic gestures to reinforce verbal cues during
human-robot interactions.

2.5 Further Topics

There are several other fields of research that are relevant to the work proposed
in this manuscript regarding behavioral medicine [4, 16]; social influence and
persuasion [24, 117]; robotic persuasion [12, 139] and coaching [65, 8, 137, 119,
34]; human intent recognition [55, 64] and activity recognition [66, 5, 22].

3 Foundational Studies

There is a large body of HRI literature investigating robot capabilities pro-
vided by their physical form factor in a wide range of application domains.
However, it is still unclear how a physical mobile agent stands out compared
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to other technologies–such as voice assistants–in health-related decision-making
interventions. Understanding such difference, if any, and how each competency
provided by the form factor contributes to this difference is crucial before making
any comprehensive attempt to utilize a mobile robot in a health intervention
application. The first reason why it is crucial to develop this understanding
is the cost of working with such robot platforms, which comes in two forms:
The monetary expense of purchasing and maintaining such platforms; and the
technical labor required to functionalize a robot to move around unstructured
environments and interact with humans. The second reason is the many con-
founding factors that influence the interaction–especially when working with
humanoid robots–and the difficulty of isolating contributions from individual
competences (e.g., speech, movement) and design elements (e.g., face, human
form) on the investigated outcomes.

The discussion of such confound effects might have indirect roots in theories
such as Attribution Theory [50] or more direct roots related to human physiol-
ogy, such as our nervous system being hard-wired to perceive faces [1]. Although
an investigation of such effects individually overreaches the scope of this work,
a series of controlled trials were conducted to validate the effects of factors
with the most relevance–such as mobility, gestures, and role-setting–which dis-
tinguish such a physical robot platform from other possible technologies. For
this purpose, a testbed comprised of a fake food pantry was created (Sect. 3.1).
As the intervention platform, a semi-humanoid robot (Sect. 3.2) was used in
a Wizard-of-Oz [28] human subjects experiments (Sect. 3.3) [123, 124]. Using
this testbed, we were able to demonstrate significant effects of robot verbal
and nonverbal communication and proxemics–which were primarily enabled by
robot mobility–on persuading participants to make healthier decisions.

3.1 Nutritional Testbed and Fake Food Pantry

An experimental testbed to facilitate the evaluation of persuasive strategies that
a mobile social robot could use to influence food choice was developed. This
testbed was inspired by prior work by Bucher et al. [17, 18] and Ung et al. [126]
on the use of a fake food buffet and a virtual cafeteria, which are simulations
of a cafeteria, stocked with fake food of varying nutritional quality, in which
study participants can make food selections in order to evaluate the impact of
different interventions on food choice. A repeated-trials experiment design was
used to test the persuasive interventions several times for each participant. In
these experiments, the participants were asked to assemble 20 meal boxes during
each study session.

Our food pantry (Figure 1) contained 45 food items that could be included
in a lunch. These items were intentionally selected to be the kinds that did not
require cooking (e.g., salad, sandwich) or that could be consumed by simply
heating up or adding hot water (e.g., soup, ramen). We used real food for long-
shelf-life items and fake food for perishables. The food items on the shelves had
highly varied healthiness levels. Building primarily on the nutritional indices
provided by the Food and Nutrient Database for Dietary Studies (FNDDS) [127]
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and Food Patterns Equivalents Database (FPED) [128], and the food quality
assessment scheme provided by the Healthy Eating Index (HEI) [77], a meal
quality evaluation tool was implemented to score individual food items in our
pantry as well as combinations of meals that can be assembled using these items.
This tool computed a score between 0 (least healthy) and 100 (most healthy)
using the FNDDS and FPED nutritional indices for our inventory of food items
and the scoring formulae provided by HEI.

Figure 1: Our fake food pantry which is used to evaluate how robot proxemics,
through mobility and multimodal cuing, can influence health-related decision-
making in a collaborative meal assembly task.

3.2 Intervention Platform

As our intervention platform, a 120-cm-tall semi-humanoid robot was used (Pep-
per [107]; Figure 1). This 19-degree-of-freedom (DoF) robot can execute so-
phisticated gestures using its head, arms, and body; can move around using its
wheels; and communicate verbally. The robot was controlled with a handheld
game controller in a Wizard-of-Oz configuration [28] by the experimenter who
was hidden in the adjacent room during the experiment sessions.

During our experiments, participants engaged in a counseling session led by
the robot at the beginning of their sessions. The counseling conversation with
the robot was intended to 1) build rapport, trust, and therapeutic alliance with
the robot, 2) establish the nutrition expertise of the robot, and 3) establish
the role of the robot during meal assembly task. The conversation consisted
of a brief greeting and a few turns of social chat, a review of the current US
guidelines for nutrition, a brief counseling dialogue in which the robot assessed
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the participant’s own dietary behavior and motivation for change, a discussion
of what the robot will be doing during the meal assembly (“I will help you by
occasionally making healthy suggestions.”), and a statement of collaboration (“I
look forward to working with you. Let’s get to work!”). During the dialogue,
the robot used appropriate conversational nonverbal behavior, including eye
gaze and hand gestures. This dialogue was pre-scripted and was also controlled
by the experimenter who observed the interaction from a different room.

3.3 User Studies

Two user studies on the effects of health interventions using the mobile robot
in our fake food pantry were conducted.

The first study [124] explored the use of mobility and deictic gestures (with-
out speech) by a humanoid robot to indicate healthy food choices at the time and
place a participant is making a decision. Providing such in-context reminders–
referred to as ‘stimulus control’ in the transtheoretical model of health behavior
change [100]–is among the most powerful techniques for changing behavior. In
order to motivate the robot’s behavior and establish trust and therapeutic al-
liance with individuals prior to health decision events, the use of trust-building
and health counseling dialogue by a robot was also explored in conjunction with
cuing behavior. In this study, the robot’s role was manipulated between par-
ticipant groups: A randomly assigned subgroup of participants went through
the counseling dialogue with the robot before beginning the experimental task.
This dialogue was intended to set the robot’s role as a counselor under SOCIAL
condition. The remainder of the participants directly started the meal assem-
bly task without the initial dialogue with the robot, setting the robot’s role as
a BYSTANDER. During the experiment sessions in both SOCIAL and BYSTANDER

conditions, for a randomly selected half of the lunch boxes that the participants
assembled, the robot approached the pantry and the participant who was assem-
bling a lunch box and cued a randomly selected healthy food option from the
pantry shelves. This cuing behavior consisted solely of physical gestures such
as pointing and gazing at the food item as well as gazing at the participant’s
face without any further verbal interaction.

A second study tested two factors at each decision point: The effects of
multimodal advice by the robot compared to no advice, and the effects of robot
mobility and proxemics on food choice, comparing whether the robot moved
into the participant’s workspace to deliver advice (MOBILE) or remained station-
ary, giving advice at a distance (STATIONARY) [123]. During the intervention
trials under MOBILE condition, the robot approached the participants to deliver
advice, using the same nonverbal behavior as in the first study, but accompa-
nied these gestures with verbal cues. These verbal cues were composed of a
propositional statement selected randomly from a pool of templates (e.g., “How
about <SOME BROCCOLI>?”) followed by a supporting argument which was
selected randomly from a pool of statements for each healthy food item (e.g.,
“Broccoli is full of vitamins, minerals, and antioxidants.”). During the inter-
vention trials under the STATIONARY condition, the robot stayed stationary in
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Figure 2: The lab layout used in the food pantry experiments.

its Home Position (Figure 2) and delivered the same multimodal advice from
a distance. During the control trials, the robot stayed in its home position
running idle animations and did not interact with the participants.

3.4 Effects of Role-setting

The findings from the first study revealed that the SOCIAL robot was rated
significantly higher than the BYSTANDER robot in satisfaction (U = 94.0, p =
.025, η2 = 0.228) and perceived knowledgeability (U = 104.5, p = .002, η2 =
0.383). Moreover, the participants felt significantly safer around the SOCIAL

(t(19) = 2.045, p = .028, d = 0.876) robot and trusted it more than the BYSTANDER
robot (t(20) = 2.334, p = .015, d = 0.999). Additionally, there were trending
positive main effects on ease of interaction (U = 89.0, p = .051, η2 = 0.166) and
the naturalness of interaction (U = 88.5, p = .059, η2 = 0.162) in favor of the
SOCIAL robot. We found a trending positive main effect of the SOCIAL condition
on HEI scores (F (1, 20) = 3.019, p = .098, η2 = 0.131, Figure 3) compared to the
BYSTANDER condition. Also, the participants who interacted with the SOCIAL

robot scored significantly higher in the post-experiment meal quality assessment
test (t(20) = 2.844, p = .010, d = 1.218).
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Figure 3: ANOVA results for the primary meal quality outcomes along with the
data distributions from the first study.

3.5 Effects of Non-verbal Cues

The analysis on the first study’s primary outcomes revealed significant positive
main effects of physical cuing on the assembled meal quality. Per-trial scores–
the meal scores of each basket the participants assembled–were significantly
higher in the physical cuing trials compared to the no cuing trials (F (1, 20) =
6.940, p = .016, Figure 3). Additionally, the aggregated per-session scores–the
total meal score of all baskets for each participant under both within-participant
conditions–were also significantly higher in the physical cuing trials compared
to the no cuing trials (F (1, 20) = 9.707, p = .005, η2 = 0.327).

3.6 Mobility, Proxemics, and Multimodal Cues in Com-
pliance, Engagement, and Alliance

The findings from the second study showed a significant positive correlation
between MOBILE condition and participants’ compliance with the robot’s recom-
mendations (χ2(1, 218) = 12.376, p = .0004). Moreover, the participants under
the MOBILE condition assembled significantly healthier meals compared to the
participants in the STATIONARY condition (F (1, 20) = 4.556, p = .045). Similar
to the findings from the first study, the multimodal cues used in the second
study–speech as well as deictic and gaze cues–had a significant positive main
effect on the assembled meal quality compared to the trials under no cuing
condition (F (2, 40) = 7.833, p = .001).

The participants’ vocal responses–verbal or non-verbal (interjections)–to
robot recommendations were coded as a metric of engagement for the second
study. An analysis of covariance revealed a significant positive main effect of
robot mobility on participant engagement (F (1, 19.99) = 26.314, p < .0001)

20



Figure 4: Aggregated engagement trends of the participants throughout 20
experimental trials for STATIONARY and MOBILE robot conditions along with the
associated exponential curve fits. The decay rate for the STATIONARY condition
was found as 0.15 (χ2 = 10.86, p = .001) while there was no significant decay
observed in the engagement rates for the MOBILE condition.

as well as a significant effect of trial number on engagement (F (1, 16.47) =
8.267, p = .011). Further logistic regression analyses for both STATIONARY
and MOBILE experiment conditions revealed that the trial number was a
significant predictor of participant engagement for the STATIONARY con-
dition (χ2(1) = 6.462, p = .011), whereas there was no such significance for
the MOBILE condition (χ2(1) = 0.008, p = .926). As demonstrated in Fig-
ure 4, the participants’ engagement rate was relatively consistent through-
out the trials for the MOBILE condition, whereas the engagement decayed
exponentially through the trials under STATIONARY condition. Addition-
ally, a significant correlation between participant engagement and compliance
(χ2(1, 217) = 15.963, p < .0001) was also found, indicating the significance of
engagement on collaborative alliance.

To analyze the effect of robot mobility on therapeutic alliance between the
participants and the robot, we ran independent samples t-test on Working Al-
liance Inventory-Bond scores. Finally, the participants under MOBILE condi-
tion rated a significantly higher working alliance with the robot (t(18.34) =
1.920, p = .035) as well as a significantly higher intention to continue working
with the robot (U = 31.0, n1 = n2 = 11, p = .029) compared to the STATIONARY

condition.
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3.7 Conclusions

The findings from these foundational human subjects experiments provided suf-
ficient validation and justification regarding the utility of a humanoid robot form
factor in opportunistic health interventions. Based on these findings, nudging
humans at the time and place a health-related decision is being made was found
to be highly valuable for improving the outcome of the decision, even if the
nudge consisted solely of physical gestures.

The studies have shown that the robot can be framed as an expert on health
topics simply through social dialogue. This role-setting dialogue has proven
valuable for increasing trust in the robot, potentially leading to higher compli-
ance with the robot’s recommendations.

The gestures alone were shown to be legible within this context to signif-
icantly improve the participants’ decision-making, even when the majority of
the participants complained that it was difficult to understand what the robot
was trying to communicate with its gestures. Addressing this shortcoming and
using multimodal cues in the second study, which combined the gestures with
speech, had even stronger effects on improving decision-making and resulted in
significantly higher quality meals.

Probably the most striking findings from these studies entailed the reflections
of proxemics theories in health-related robotic interventions. The ability to move
into a human’s social zone ([45]) while giving advice was found to be highly
valuable in achieving a high rate of compliance as well as retaining engagement.
This proxemics behavior was found to be the most significant factor in increasing
the decision-making quality throughout our experiments; and its absence was
found to be the primary factor behind losing engagement and, consequently,
compliance over time. This ability, which is potentially the costliest component
of such platforms, is also potentially the most valuable in making them stand
out compared to other stationary platforms such as voice assistants.

In addition to providing sufficient fundamental understanding of how physi-
cal form factor can contribute to improving health-related decision-making using
opportunistic cuing, these studies also provided two other important lessons: (1)
Humans are fast! (2) Decision-making is perceivably momentary. The initial
intention prior to starting these experiments was to have the robot drive au-
tonomously within the lab. However, during the pilot studies, it became clear
how naive this ambition was after observing how comically slow the Pepper
robot was compared to a human. Even if the robot had access to the full map
of the laboratory and was pre-loaded with the free configuration space, it still
took 20-30 seconds for it to pace the 5 meters between its home position and the
pantry shelves. Note that this duration was measured under the “best” condi-
tions where the robot only drove over a completely straight line and there was
no moving entities around it in the room to trigger collision avoidance behav-
ior. Consequently, by the time the robot made it into the shelf after detecting
the participant was picking up food items, the participant had already com-
pleted their lunch box, made it back to the logging computer, and was about
to finish logging their current meal and starting the next trial. Even when the
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autonomous navigation was replaced with a teleoperation system, where the ex-
perimenter drove the robot using a remote controller from the next room, it was
still not practically possible to keep up with the participants. We were able to
catch up with them by the pantry, more often than not, but the robot’s recom-
mendations were then usually followed by responses such as “Oh. I’ve already
picked up <food item>. I’ll get <the recommended item> later,” indicating we
have missed the decision-making point and it was already too late. Following
these test runs, an intentionally bad meal logging user interface was designed
and implemented for the participants. This bought us some crucial seconds as
we preemptively drove the robot to the pantry to catch the participant at the
next decision-making moment and, hopefully, deliver a successful intervention.
This struggle was another reminder why proactivity is important and was the
initial motivation behind the model presented in the following chapters of this
thesis: A model that can anticipate user behaviors in unstructured environ-
ments so that we can use robots to provide just-in-time advice, without being
comically late, and achieve opportunistic cuing for health behavior change.

4 Approach

The approach taken to tackle the problem of modeling and predicting the human
behavior in this thesis is rooted in the assumption that the majority of human
activity is repetitive, as defined by “routine behavior” [3, 108]. This assumption
is further supported by earlier studies which have shown the human mobility
to be 93% predictable [116] and follow consistent spatial and temporal patterns
[42]. Furthermore, the significance of routine behavior becomes especially rel-
evant and prevalent within the context of health behavior considering that the
majority of such behavior is in fact habitual [14, 37, 81], meaning that they
are repeated on a regular basis triggered by environmental cues [37, 79], which
form the context space. This connection between health behavior and routines
makes the problem of modeling behavior patterns and predicting future human
activities quite tractable: If a behavior is repeated based on a human’s past
and current context states, then the state history should provide sufficient in-
formation for the their future activities during further repetitions of the routine
behavior. In this sense, if one can define a context space to contain information
that is descriptive enough to represent the connection between the human’s state
history, future states, and activities, then it becomes almost trivial to leverage
this space to make predictions of future states based on observation histories.
Then these state predictions can be used to compute the most probable future
activity since the connections between the states and the activities have already
been established by past observations from the context space.

4.1 A Generalizable and Causal Context Space

One of the core principles sought after through the work in this thesis is the
generalizability of the approach, as discussed in Section 1. This means that the
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context space, which is the most fundamental building block of a learning-based
method to enable proactivity, should be generalizable across different task do-
mains. This necessitates associating activities with a set of observations that
are “universal” across domains, so that the underlying representation learning
approach can be applied to different domains with minimal changes. As this
universal space of observations, time and space are found to be the most fitting
as these observations do not require prior information about the task domain
and are effectively universal across any domain. Further, considering the afore-
mentioned connections between the environmental cues, habitual behavior, and
routines, the spatiotemporal cues can be argued to be strongly correlated with
routine health-related behavior. Behaviors such as “brushing in the bathroom
before bedtime,” “grabbing a snack from the kitchen during TV time,” or “go-
ing to the gym after work every other day,” can all be examples of how these
correlations can take shape. Notice how each statement can be defined by a set
of (activity, place, time). Drawing on this observation, positional time-series
data–referred to as trajectories henceforth–and their association with activi-
ties are chosen to be used as the primary form of activity representations to
be used within a spatiotemporal context space with the primary axes of Time
and Position. The regions within this space can then be labeled as necessary
with associated activities to form the connections between the context and the
activities. This way, the problem of enabling proactive engagement can be re-
duced to a trajectory prediction problem in its most fundamental and the most
generalizable form. Moreover, using trajectories as the backbone of the routine
representation learning, the solution then inherently becomes capable of making
causal inference: Where an agent is right now has a strong influence on where
it will be (and what it will be doing) in a moment.

As an example to illustrate causal connections in such a context space and
the connections between the states and activities, a demonstration is provided
in Figure 5. In this figure, a synthesized 3-day movement patterns of a hy-
pothetical point human, who lives in a one-dimensional world and engages in
daily routine behaviors, is shown. One may imagine that Days 1 and 2 are week-
days where the point human wakes up in their home (Activity 1 ), commutes to
work (Activity 2 ), works (Activity 3 ), goes out for lunch (Activity 4 ), has lunch
(Activity 5 ), and so on. The timings and the positions for each activity and
activity transitions exhibit minor variations as one might expect to happen in
real life (Day 1 vs. Day2 ) as well as major variations (Day 1 vs. Day3 ). On
a weekend (Day 3 ), the agent exhibits a highly different behavior–a different
routine–and goes out to the park (Activity 9 ) to have a picnic (Activity 10 ),
and so on. Notice that the exact time and position scale of these activities
and the axis labels are relatively irrelevant: Instead of daily commute behavior,
these trajectories might as well be demonstrating in-home activities of the point
agent or the movements of a linear actuator operating in a factory, addressing
the generalizability principle of the proposed context space.
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Figure 5: A toy example demonstrating how time and space can be associated
with activities of a 1-dimensional point agent through a day for multiple days.
The routine behavior has minor (Day 1 vs. Day 2) and major (Day 1 vs. Day
3) variations between each day.

4.2 Discussing Adaptability

Another core principle taken into account in this thesis is the adaptability of a
proactive engagement system. Adaptability in this scope is considered twofold:
User adaptability and task adaptability. Adapting to a specific user entails a
model’s ability to make inferences on a wide range of behavior routine patterns;
across a wide range of environments where these behaviors are taking place.
Whereas the task adaptability entails the models capacity to be useful in a wide
range of intervention tasks.

The outstanding problem with adaptability, especially using deep learning-
based parametric models, is that even the most “adaptable” model needs to
have some prior knowledge of the underlying distribution that represents the
variations in the observations. Even the approaches that propose the highest
level of task adaptation based on models such as transfer learning or meta-
learning require some sort of exposure to the full spectrum of variations in
the underlying environment observations during the training time, and these
models typically cannot be fine tuned if the observations during test time are
significantly different from the training set. However, considering the level of
variation individual’s behaviors can have compared to one another, or how the
environments that they are operating in might be different from one another,
it is not practically feasible to assume access to a dataset that represents the
whole distribution sufficiently during the training time before deployment. This
effectively means such models will likely require a significant amount of re-
training upon deployment, and it is questionable for how long an individual
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should keep feeding their home robot with training data before it finally can
understand to play along with their daily routines.

The proposed solution approach to enabling adaptability in proactive en-
gagement is also twofold. First, instead of using a large parametric model,
leveraging a probabilistic model for statistical inference is preferred. This type
of models are typically much less data-hungry than any sort of deep learning
approach. Using such a model, depending on how it is structured, it is possi-
ble to predict where a human is likely going to be in a relatively distant future
compared to parametric model-based trajectory prediction methods, which typ-
ically offer up to several seconds of prediction horizon. Even though such hori-
zon range may be more than enough and the models can successfully generalize
over multiple scenarios in certain applications (e.g., autonomous driving), it is
not sufficient for a human-robot co-habitation scenario where the system may
benefit from much longer prediction horizons spanning minutes or hours.

The second aspect of adaptability–the task adaptability–suffers from a sim-
ilar issue. But this time, instead of trying to tackle the possible variations in
the user’s behavior, the system needs to be able to handle the variations in the
tasks assigned to the robot and the system’s competences in handling them. In
Figure 6, a stereotypical end-to-end learning model to generate proactive robot
behavior is shown. Such models are trained with predefined set of competences
(e.g., Activity Recognition, Object Recognition) and robot goals. What if one
day, the user asks the robot to assist them with an activity that the robot was
not trained to recognize? Or what if one day, the user buys a completely new
coffee machine with a completely new form factor and the robot attempts to
make some coffee before the user wakes up, but fails to locate the machine? Un-
less such a model was trained with every possible variation in the task domain
prior to deployment–which is practically not possible–then it will likely require
a full new training cycle to account for the users’ previously unanticipated re-
quests or futuristic coffee machines that do not have any buttons or knobs but
fully operated using voice commands. Through leveraging a more modular ap-
proach to generating proactive behavior instead of using an end-to-end model,
this level of adaptability can be handled in the architecture level rather than
the model level. Such a modular architecture is proposed and further discussed
in Section 4.4.

In the following subsections, the complete approach to the problem of oppor-
tunistic proactive engagement by leveraging modeling and prediction of routines

Figure 6: Conventional end-to-end approach to generating proactive agent be-
havior.
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is described. Starting with a first look at the problem through probabilistic
graphical models and discussing the shortcomings of such methods followed
by a breakdown of the problem, a Gaussian process-based routine modeling
method as well as a system-level architecture is proposed by the end of this sec-
tion. Following the motivations and goals as outlined in Section 1, the proposed
framework addresses the Proactivity problem by building on Spatiotempo-
ral Causality, and offers an Adaptable machine learning method that is
Generalizable across different task domains at different scales to learn routine
behavior patterns .

Figure 7: A two-timeslice Bayesian network for demonstrating a possible ap-
proach to model routine human behavior using probabilistic graphical models.

4.3 An Initial Solution Attempt with Probabilistic Graph-
ical Models

The behavior patterns in Figure 5 can be represented using a probabilistic graph-
ical model such as an N-timeslice Dynamic Bayesian Network (DBN) at the
activity level . For example, a two-timeslice representation of the point person’s
behavior may take form as demonstrated in Figure 7. Notice that for a 7-day
week, if the Time of Day was factored down into K slices (e.g., early morning,
morning, noon, early afternoon, ...), then the transition probabilities between
Activityt−1 to Activityt can be represented by a table of size K ∗7∗13-by-13 for
the person in Figure 5. These probabilities can be computed by observing the
human behavior enough-many times and then used to predict the likelihood of
future agent activities. Notice that such model can be further simplified and/or
it can be functionalized by actively reshaping the N-timeslice model with the
observations of new transitions and activities.

Such a model offers a relatively straightforward way to keep track of activities
and transitions that are causally informed by the observed states–or the context
(e.g., [Time of Day, Day of Week, Activityt−1] for this example). Moreover,
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since it operates in a discretized state-space (Activity ∈ A), it would not require
any sort of prior knowledge of the system’s internal dynamics nor necessitate
an approximation of it. However, this approach inherently assumes access to an
activity recognition tool1. This assumption, combined with the factorization of
the observation space, limits such models’ usefulness in two main ways: First,
without a proper activity recognition tool, this approach cannot be used to learn
any useful representations. Second, the approach cannot easily be transferred
to other domains as this would require re-factorization of the observation space
and access to another activity recognition tool. For example if the behavior
demonstrated in Figure 5 represented the person’s home routines instead of
their daily commute routines, then we probably would have to have a finer-
grained time factorization, and another tool that can recognize a completely
different set of activities (e.g., cooking, watching TV, snacking, etc.). Although
approaching the problem with graphical models provides a more formal insight
on possible solutions and shows that a scalable, learning-based probabilistic
inference model may be implemented using, for example, DBNs. However, such
a model requires prior knowledge for factorization and assumes access to an
activity recognition tool prior to behavior observations, which contradict with
the adaptability and generalizability principles pursued in this work.

4.4 Structuring the Problem

The observation of dependence on activity recognition tools and the time frag-
mentation for human routine behavior modeling pose interesting questions:
Which class of activities should such a model be aware of? Should this model
be able to classify atomic actions (e.g., grasping an object) or more compos-
ite actions (e.g., making coffee) to be of the most use? How fine should the
time discretization be (days, hours, seconds, years, ...)? Without being able
to fully specify a target task for the intervention agent, one might argue that
these questions do not have any good answers since the necessary tools and
methods will differ greatly from task domain to task domain. Drawing on this
observation, the generalizable approach sought after in this work aims to be
as task-agnostic as possible in order to achieve the most reusability and and
reprogrammability–in whichever domain it may have been deployed.

For example, in the context of routine behaviors, one might want to be able
to model daily household routines as well as day-to-day commute behavior of a
human, or the manipulation steps that a factory worker takes within workflows
using certain machinery. Or, within the current scope of opportunistic health
interventions case study, a robot might be tasked with detecting and intervening
in unhealthy snacking behavior as well as engaging with a person who is about to
skip an exercise session. Even though each of these tasks likely requires different
data collection methods and activity recognition tools, one can contemplate the
idea of modeling routine behaviors using a representation that is generalizable

1Note that activity recognition is a different branch of research and is out of scope of this
dissertation.
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Figure 8: Proposed structure to approach the opportunistic interventions prob-
lem. The volatile blocks represent the functionality in such systems that are
likely to change based on the intervention goals and/or the users’ environment.
The work proposed in this manuscript aims to focus on learning representations
that are useful for a variety of intervention goals and environments.

across all such task varieties. Such an approach would provide a model that has
a reusable behavior modeling core–or a representation learning model–instead
of a task-specific end-to-end learning and modeling system. In Figure 8, the
proposed modular system diagram for a proactive agent is demonstrated. Using
such an architecture, the volatile blocks–the blocks that are domain- and task-
dependent–can be detached from the behavior learning model. This way, it is
possible for the learned representations to be useful for a variety of tasks with a
possibility of applications in a variety of domains without needing to re-train an
entire neural network in order to handle a task variation that was not available
during the original training time.

The diagram in Figure 8 draws attention not only to the variability at the
high-level tasks (home, commute, factory routines) as well as the nuances within
the tasks. Thinking about the nature of the engagement (e.g., recommending
a healthy food, suggesting setting a goal destination on a map automatically,
fetching a tool in preparation of the next step in an assembly sequence), the
target (intervention) tasks can be considered to be volatile and should have the
flexibility of changing often or on demand. For example the agent might be
required to recommend going out for a walk or suggest a different route to work
today, or start boiling water for tea time. The activity recognition tools are
also volatile and likely to change depending on the nature of the engagement,
the environment, and the target task as well as technological advancements.
Thus, instead of working for an end-to-end system, I believe it makes much
more sense to work in a modular behavior modeling (or rather representation
learning) backbone to maximize the utility of the approach for the widest variety
of tasks and longest period of time possible.

For the representation learning part of this proposed architecture, it is intu-
itive to focus on time-series positional data as discussed earlier in Section 4.1.
Such data, whether it is the location of a human in their house or out commut-
ing; or the hand positions of a factory worker during an assembly step, carries
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highly useful contextual information for the current and the future activities,
referred to as spatiotemporal causal context henceforth. Unlike the output of
any activity or object classification tool, the time and space are universal and
are not subject to change depending on the task domain. This makes leverag-
ing such information for a reusable and reprogrammable behavior modeling and
intervention tool highly appealing, since making use of spatiotemporal context
makes it possible to learn useful representations that one can build on in a
fashion as demonstrated in Figure 8, without having the prerequisite of having
access to an activity recognition tool, which is restrictive.

5 Representation Learning with Gaussian Pro-
cesses

Considering how the modeling approach discussed in Section 4 relies heavily on
the positional context (or simply the location of the human) and time, a design
decision not to rely on discretization and to work in a continuous state-space is
almost trivial to be made. To achieve this, the behavior of the human can be
modeled as a Gaussian Process (GP), and the observations of the human behav-
ior can be fed to a kernel learning algorithm to generate probabilistic models of
transitions using Gaussian Process Regression (GPR). Notice that it does not
make sense to use the trajectories in Figure 5 directly as is in such a model
since the trajectory on Day 3 can be considered out of distribution of what we
want to model for Days 1 and 2. This is because such a model, with a one-
dimensional (1D) input (feature) space, only considers the time as the observed
context variable and bases the inference on it, which is not informative enough
to differentiate trajectories with major variations. However, if one chooses to
consider the position itself as another context variable, thus, as another feature
axis, then it is possible to make this distinction between the distributions gov-
erning Days 1, 2 and Day 3. In Figure 9, a demonstration of how the feature
space can be reshaped for this purpose is given.

In Figure 9, the feature space is spanned by two axes, (Time of Day, Current
Position), instead of time alone. And the output space represents the agent’s
position in 15 minutes into the future–measured from the current time and
position. Note that the input points in this example are exactly the points
given in Figure 5, and the output points are the identical position points as
in this figure shifted with a constant time difference to represent a prediction
horizon. In this sense, looking at such a three-dimensional (3D) plot from
a top-down view towards the feature plane, Figure 9-bottom-right, yields the
exact same plot as in Figure 5, and looking at it from other perspectives shows
either the agent’s position at the prediction horizon depending on the current
time, Figure 9-bottom-left; or the relation between the future and the current
positions, Figure 9-top-right.

This effectively forms a 3D inference space: with a two-dimensional (2D) fea-
ture space (the context space); and a 1D output space. In this space, the current
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and the past context pushes the subsequent future contexts into different regions
of the inference space. For example, to reach the region of Activity 5 in the in-
ference space, defined as the region around (TimeOfday, Position) = (12, 0.5),
the agent must have followed the trajectory through Activity 1 and Activity 2 ;
and taking this path moves the agent contextually far from Activity 10, which is
visually apparent in Figure 9-top-left. In more clear terms, it is possible deduce
whether the agent is more likely to be engaged with Activity 5 or Activity 10
at t = ti + 15minutes by checking the intersection of a ray perpendicular to
the feature plane at (t, x) = (ti, xti) with the previously observed trajectory
points. This means that it is possible to fit a GP model onto this reformed 3D
space as the two feature axes can now be thought as two random variables that
the data provides samples of and that the evidence is conditional to; and their
distributions can be approximated by using GPR leveraging readily available
kernel learning tools. The reasoning behind this approach is further discussed
in detail in Section 5.1.

The primary benefit of using such a model is that it does not rely on ac-
cess to an activity recognition tool or any other prior information about the
user or the environment to be useful. It already inherits a representation of the
human’s behavior in terms of trajectories. These trajectories can possibly be
segmented (e.g., by using frequency domain representation or simply by using
2D windows of timing and spatial information) and broken down into clusters
of activity regions. These clusters of trajectory segments can then be used to
inform a model such as a DBN. Considering our intervention goals such as rec-
ommending apples instead of potato chips during snack time, we are most likely
interested in a very small subset of all possible agent activities. Cluster label-
ing can be custom tailored for each human using the system, depending on the
users’ goals. This can be done by using an activity recognition tool tailored for
the task in conjunction with the behavior representation learning following the
scheme shown in Figure 8, or maybe even simply through user input. For exam-
ple, the agent might ask the user to let it know when they go to the kitchen to
grab some snacks. Once the user does so, then the system can label the feature
space region around the timing of this input as Snacking Activity, and assum-
ing the representation learning model already had some trajectory observations
from before, then it can immediately start predicting the intersections with the
recently labeled feature space region during the future repetitions of the rou-
tines that include snacking behavior. Alternatively, this cluster labeling may be
achieved using an additional recognition tool that can be downloaded or updated
in the robot’s firmware upon request, whenever needed, without requiring the
robot to re-train a behavior representation model from scratch for each new re-
quest. This recognition tool might have as generic capabilities as recognizing a
kitchen, or a pantry, or a cluster of snacks and outputting the locations of these
entities. This location information can then be used to label the regions in the
feature space with the associated activity using the readily existing trajectory
representation data of the user. Such an approach should reduce the depen-
dency on activity recognition and/or labeling by orders of magnitude compared
to an end-to-end system since it only necessitates the labeling of the target in-
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Figure 9: Reforming the example data points shown in Figure 5 into a new state-
space representation. In this form, the Time of Day and the Current Position
are treated as the feature axes, while Position in 15 Minutes is taken as the
output axis. Doing so creates an inference surface that contains information
about the future position of the point agent that is temporally causal which
is useful to make trajectory predictions when there are major variations in the
observed trajectories.

tervention activities instead of the whole spectrum of possible activities. Thus,
it offers a higher flexibility in terms of the level of routine behavior abstraction it
provides. A variety of continuous-time routine behavior data at different scales,
such as day-to-day commute, in-home movements, hand positions during dish-
washer operation, can be used effectively by the same framework after learning
the associated kernel parameters.

Another significant advantage of GPs is that they are non-parametric and
data-driven models. This makes it possible to represent the underlying data with
very few training samples and make very few assumptions about the dynamics
governing the modeled system. Effectively, they do not require training for
thousands or millions of parameters to be able to generate useful representations.
This makes it possible to implement a much more flexible system highly capable
of adapting to variations in user behaviors and as well as environments and task
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domains.

5.1 Gaussian Processes Regression for Modeling and Pre-
dicting (Long-term) Human Trajectories

A typical linear regression task investigates a noisy linear system

y = wTx + ε (1)

where x is the input to the system and y is the output such that the dataset D
has the form

D =
{

(x1, y1), ..., (xn, yn)
}

(2)

and ε is the observation noise, typically modeled to have a Gaussian distribution
with zero mean

ε ∼ N
(
0, σ2

n

)
(3)

The goal to such parametric regression task is to to find the parameters,
w, that describe the system the best using inference methods such as Maxi-
mum Likelihood Estimation (MLE) and maximizing the likelihood P (D|w); or
Maximum A Posteriori estimation (MAP) maximizing the posterior probabil-
ity P (w|D) over the parameter space, and compute the predictive distribution
P (y∗|x∗;w), for a test point (x∗, y∗).

Gaussian Processes (GPs) offer a generalization to this probabilistic infer-
ence approach by leveraging an integration over the entire parameter space,
which eliminates the need for specifying a single set of parameters for infer-
ence. Instead, GPs take every possible parameter combination into account and
weighs them into the final model based on their posterior probability

P (y∗|x∗,D) =

∫
w

P (y∗|x∗;w)P (w|D)dw (4)

Given that a Gaussian prior was chosen for w, the resulting predictive dis-
tribution P (y∗|x∗,D) can be shown to be also a Gaussian distribution

P (y∗|x∗,D) ∼ N
(
µ,Σ

)
(5)

with mean µ and covariance Σ.
This implies that if one can find a function to compute correlations between

the training points and the test point(s) to effectively compute the covariance
Σ, the parametric regression problem can be generalized to a non-parametric
one which considers infinitely many functions and define “a distribution over
functions” [135].

While solving a GPR problem, the covariance matrix associated with the
training and the test outputs (or “labels”) (y and y∗ respectively) is broken
down in the following form[

y
y∗

]
∼
[
K + σ2

nI K∗
KT

∗ K∗∗

]
(6)
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where K is the covariance matrix for the training inputs, X; K∗ is the covariance
matrix for the union of the training and the test inputs, [X,X∗]; K∗∗ is the
variance of the test inputs, X∗. This matrix can then be used to compute
the predictive distribution for any set of test points given the training points.
Assuming that the data is subject to a Gaussian noise with variance σ2

n, it can
be shown that the final predictive distribution is then

P (y∗|X∗,D) ∼ N
(
KT

∗ (K + σ2
nI)

−1y, K∗∗ −KT
∗ (K + σ2

nI)
−1K∗

)
∼ N

(
µ,Σ

) (7)

which not only gives a mean prediction (µ) for a given test point, but also
provides a confidence region around that prediction (Σ) that is extremely useful
in applications where uncertainty has an impact on the outcome of the inference.

The individual elements in the matrices in Eq. 6 (and 7), which are effectively
kernels, can be calculated using a kernel function such as a squared exponential
kernel:

k(x, x′) = σ2exp

(
− 0.5

(
x− x′

ls

)2
)

(8)

where ls is a parameter referred to as lengthscale, which defines how quickly the
output can change with respect to the changes in the input data, and σ is a
scaling factor.

Even though GPR is referred to as a “non-parametric” technique, there are
three parameters required to define a GPR model. These are the noise variance
σ2
n, which has the dimensionality of the output space; and the length scale ls

and the scaling factor σ, which share the dimensionality of the input space for
a 1D output space. Conveniently, similar to many other regression approaches,
these parameters can be learned using some training data and a loss function
based on (negative) marginal log likelihood.

Even in its raw form, a Gaussian process can be used to model trajectory
dynamics and make confidence-bound predictions for previously unseen obser-
vations. Figure 10-Left demonstrates the output of a Gaussian process following
a toy example of a point agent moving in a 1D world. This example takes the
time axis (t) as the feature (input) space and the position (x) as the output
space. So the modeling approach based on a Gaussian process GP, makes the
assumption that

f(t) ∼ GP(m(t), k(t, t′)) (9)

where f is the function of time defining the behavior of the point agent, m and
k are the mean and covariance functions of the underlying Gaussian process,
respectively. Using this process and the formulation summarized in Equations 6-
8, one can plug in a set of (unseen) test inputs t∗, which in this example is simply
a fine quantization of the whole t-axis range, and finally compute the predictive
distribution over this feature space

P (x∗|t∗,D) ∼ N
(
µ,Σ

)
(10)
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Figure 10: Gaussian process regression on two sets of data. Left: Regression
is based on 5 observations from a single routine behavior trajectory. Right:
Regression is based on two highly different routine trajectories. While the re-
gression results are quite accurate in the case on the Left, the model cannot
successfully fit in the case on the Right where the data has a high variance.

where D =
{

(t0, x0), (t1, x1), (t2, x2), (t3, x3), (t4, x4)
}

for the example in Fig-
ure 10-Left. The mean function (or the prediction) µ(t) and the confidence
region which is computed using Σ is also demonstrated in this figure.

The primary issue with this raw form of Gaussian process regression arises
when there are major variations in the agent’s behavior (Figure 10-Right). The
1D point agent sometimes may choose to follow a trajectory (e.g., Figure 10-
Right Routine trajectory 1 ) and a different one in other times (e.g., Figure 10-
Right Routine trajectory 2 ). In this case, the predicted trajectory will not be
successful in regressing onto neither of these ground truth trajectories.

An observation can be made here, with a reference to temporal causality, that
the input value (t2) is equally indicative of (x2) and (x6) and is not useful to
make successful modeling/prediction. The point (t2, x2), however, is indicative
of the future (x3), and the point (t2, x6) is indicative of the future (x7). Building
on this observation, one can imagine to augment the 1D feature space into a
2D one and build the regression model on features, F , from this augmented
feature space similar to the one demonstrated in Figure 9. For the given system
f(t) = xt and a fixed prediction horizon td, the new underlying system f†(·, ·)
becomes:

f†(t, xt) = f(f−1(xt) + td) + ϵn

= xt+td + ϵn

ϵn ∼ N (0, σ2
n)

(11)

Given that td is the fixed time difference between the observations in the example
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in Figure 10, the system f†(·, ·) will have the following data points:

F =



t0 x0

t1 x1

t2 x2

t3 x3

t0 x0

t1 x5

t2 x6

t3 x7


,X =



x1

x2

x3

x4

x5

x6

x7

x8


(12)

This augmented representation of the original dataset, D, is not going to
suffer from the issue demonstrated in Figure 10-Right at the cost of adding
an extra dimension to the underlying Gaussian process. A nice property of
Gaussian processes is that it is fairly straightforward to apply them to higher
dimensional input-output spaces. An example visualization of data augmented
this way is given in Figure 9-top-left. And Figure 11 demonstrates the out-
come of GPR on the example dataset from Equation 12. The two confidence
regions depicted in this image reside on the slices from the distribution sur-
face created by the 3D data points. These slices are created by computing the
intersection of the surfaces created by Routine trajectory 1 and Routine tra-
jectory 2 with the distribution surface, and projecting this intersection on the
(Time, FuturePosition) plane. Notice that in Figure 11 at time t0, the agent
is at x0 (not visible in the figure) and predicted to be on either x1 or x5 in the
next time step. Depending on whether the agent moves to x1 or x5 at t1, the
model then can successfully predict that the agent is going to be either at x2 or
x6 in the next time step, respectively.

Even though this example delivers the point of how the feature space can be
altered to get the process to be able to handle major variations in the observa-
tions, in a real-world application, using a fixed horizon td might be problematic
as the data may not have the exact granularity needed or it may prove to be re-
strictive as the required prediction horizon might be significantly different than
td for each prediction task. A possibly finer approach to augmenting the state
space to handle the variations in observed trajectories can leverage a continuous
horizon axis, such that the original system f(t) can be modified to

f‡(t, x, h) = f(f−1(xt+h)) + ϵn

= xt+h + ϵn
(13)
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Figure 11: 2D projection of the Gaussian process regression after re-structuring
the feature space. The model is now able to distinguish between the two dis-
similar routines.

and the underlying feature and output matrices become

F =



t0 x0 0
t0 x0 h0

t0 x0 h1

... ... ...
t1 x1 0
t1 x1 h0

t1 x1 h1

... ... ...
. . .


,X =



f(t0)
f(t0 + h0)
f(t0 + h1)

...
f(t1)

f(t1 + h0)
f(t1 + h1)

...
.


(14)

for any given horizon h = [h0, h1, ...].
Assuming F and X are used as the input and output training data, respec-

tively, for the example data in Equation 14, the GPR model’s parameters can be
learned to compute a distribution over a predicted trajectory, x∗, using a desired
horizon h = [h0, h1, h2, ...]

T and current position xc. Adjusting the notation of
the Equation 7 for this example, this predictive distribution is then

P (x∗|F∗, (F ,X )) ∼ GP
(
m
(
t, x, h

)
,k
(
(t, x, h), (t′, x′, h′)

))
(15)
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where,

F∗ =



... ... ...
tc−2 xc−2 0
tc−1 xc−1 0
tc xc 0
tc xc h0

tc xc h1

tc xc h2

... ... ...


(16)

and the horizon axis in this feature matrix can be collapsed onto the time axis
to be paired with the resulting mean timeseries trajectory prediction over the
horizon for each data point in the input data, F∗,

FutureTrajectory = [(tc + 0, µx∗|tc,xc,0),

(tc + h0, µx∗|tc,xc,h0
),

(tc + h1, µx∗|tc,xc,h1
),

(tc + h2, µx∗|tc,xc,h2
),

(tc + h3, µx∗|tc,xc,h3
),

...]

(17)

This resulting trajectory prediction will

1 Be based on the GP parameters obtained during training on previously
observed trajectories

2 Retain and leverage the correlation information that already exists in the
model’s covariance matrix, K

3 Be further informed by the history of the currently observed trajectory
(top half of F∗) since the data points in F∗ will be used to compute
K∗, and this will help handle minor variations in the current trajectory
compared to the previously observed ones

4 Be able to query the future trajectory based on every the data point
available to the model in F , X , and F∗

5 Result in a completely data-driven (long horizon) trajectory prediction
even after observing and training on a single routine demonstration.

This reformed data space can be used in Gaussian process regression to pre-
dict long-horizon human trajectories without any theoretical limitations on the
horizon length. The only practical limitation is the availability computational
resources that are able to keep data matrices F , X , and F∗ in the memory.
This limitation can be managed by appropriately down-sampling routine tra-
jectories while making sure the sample size is sufficient to represent the under-
lying data (e.g., sampling at Nyquist rate), or by using approximate Gaussian
process methods [52]. When there are major variations in the observed routine
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trajectories, if a current trajectory resembles any of the past observations dur-
ing inference time, the model will be able to untangle it from other dissimilar
behaviors without a need for a tool that is able to distinguish and cluster dissim-
ilar trajectories and training several different models for each distinct behavior.
Moreover, the minor variations that might be occur between otherwise identical
routines can be modeled by the noise term, σ2

n, of the GPR model, and the
model then can generalize across these variations with the learned distribution.

A final consideration before making this approach feasible for a practical
application is the input/output dimensions. So far the examples given have fol-
lowed a 1D point agent. However, this is not practical for a real-life trajectories,
which are 2D, at best, assuming the goal agent is moving on a planar space. To
handle this, a trivial extension to the original function, f(t), can be applied to
consider it as a mapping from time to 2D coordinates instead of 1D coordinates:

f(t)→ (x, y) (18)

and following the same notion of leveraging the current position and a horizon
axis as well as the time, we can construct the new input/output space to repre-
sent a mapping from time, current position and the horizon to 2D coordinates:

f‡(t, x, y, h)→ (x, y) (19)

which presents a “multi-task” GPR since now the output is 2D.
There are methods available in the literature to handle the multi-task GPR

problem [9]. After observing during the initial experimentation with synthesized
data that the multi-task approach did not result in any significant performance
improvements for the application intended in this thesis work, it was decided
to use two GPR models for each output dimension of the regression problem
for simplicity. The two predictive probability distributions associated with each
GP for x− and y − axis outputs of the trajectory predictions are

P (x∗|F∗, (F ,X )) ∼ GPx

(
m
(
t, x, y, h

)
,k
(
(t, x, y, h), (t′, x′, y′, h′)

))
P (y∗|F∗, (F ,Y)) ∼ GPy

(
m
(
t, x, y, h

)
,k
(
(t, x, y, h), (t′, x′, y′, h′)

)) (20)

which share the same input data tensors, F , but separate GP parameter sets
(σ2

n, ls, σ)x and (σ2
n, ls, σ)y learned by training on separate output tensors X and

Y, respectively. The resulting mean predictions µx∗ and µy∗ are then combined
to create a final 2D trajectory prediction:

Future 2D Trajectory = [(tc + 0, µx∗|tc,xc,yc,0, µy∗|tc,xc,yc,0),

(tc + h0, µx∗|tc,xc,yc,h0
, µy∗|tc,xc,yc,h0

),

(tc + h1, µx∗|tc,xc,yc,h1
, µy∗|tc,xc,yc,h1

),

(tc + h2, µx∗|tc,xc,yc,h2
, µy∗|tc,xc,yc,h2

),

(tc + h3, µx∗|tc,xc,yc,h3
, µy∗|tc,xc,yc,h3

),

...]

(21)
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5.2 Algorithms

In this section, the the algorithms used during the implementation of the GPR-
based trajectory prediction described in the previous section are given in pseudo-
code. Note that these algorithms are given assuming a 1D output space, instead
of a 2D one, for notational simplicity.

To begin with, Algorithm 1 demonstrates the overview of the method used
to learn the kernel parameters for the GPR. The input for this algorithm is a
dataset of trajectories which are not “clipped” into “snippets” or segments of
routines for the sake of completeness. During the experiments, the dataset was
already collected in segments of routines rather than a full trajectory spanning
multiple routines. The clipping subroutine within this context can be exem-
plified by assuming the dataset D is a week-long trajectory observation of an
agent, and each routine segment R corresponds to individual days within this
dataset.

Algorithm 1 Learning Gaussian Process Regression kernel parameters

Require:
Timeseries data D
Maximum training loss threshold lossmax

Ensure:
Optimal lengthscales, ls; scaling factors, σ; noise level σn

0: procedure LearnKernelParameters(D, lossmax)
1:

{
R1, R2, ...

}
← ClipRoutineSnippets(D)

2:
{
S1, S2, ...

}
← DownSampleSnippets(

{
R1, R2, ...

}
)

3:
(
F ,X

)
← FeaturizeSnippets(

{
S1, S2, ...

}
,
{
R1, R2, ...

}
)

4: while loss > lossmax do
5: loss = −MarginalLogLikelihood(GP(σ, ls, σn|F),X )
6: (σ, ls, σn)← loss.backward(σ, ls, σn)

7: return (σ, ls, σn)

Assuming that the segments {Si} are composed of data points sampled at a
frequency much higher than necessary, then it is good practice to down-sample
them to mitigate issues that may rise due to data tensors growing beyond prac-
tical computational limits. Although there can be much smarter ways to con-
duct this down-sampling operation, such as by first finding the “key points” in
the trajectories that would result in the best representation of the trajectory
with minimum amount of data points, a simpler approach using equidistant
sampling in both time and position dimensions was preferred since maximum
representational efficiency was not a primary point of concern in this work. This
equidistant down-sampling method was assumed to provide the sufficient rep-
resentation of the full trajectory, and is provided below in Algorithm 2 for the
sake of completeness.

The “featurization” mentioned in Algorithm 1 Line 3 refers to the transfor-
mation of the original input-output space to create the spatiotemporal feature
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Algorithm 2 Down-sampling subroutine used for the experiments

Require:
Raw routine snippet R =

{
(t0, x0), (t1, x1), ..., (tn, xn)

}
Time quantization tq
Position quantization xq

Ensure:
Down-sampled snippet S

0: procedure DownSampleSnippet(R,tq,xq)
1: S ← {(t0, x0)} ▷ Initialize snipped trajectory
2: tlast = t0
3: xlast = x0

4: for i ∈ [1, ..., n] do
5: td = ti − tlast ▷ Time difference
6: xd = xi − xlast ▷ Position difference
7: if (td > htq) OR (xd > hxq) then
8: S ← S ∪ {(ti, xi)}
9: tlast = ti

10: xlast = xi

11: return S

space points, F , and the output points, X , as shown in Equation 14. The
pseudo-code in Algorithm 3 demonstrates the computation of F and X . In
the simplest terms, this algorithm looks over a fixed horizon from each sample
point in the down-sampled segments, and uses the same equidistant sampling ap-
proach used in the down-sampling subroutine to sample additional points from
this horizon that will populate the elements in F where h ̸= 0 (Equation 14).

Once the dataset is featurized and the GP parameters are learned using
this augmented dataset, then the model is ready to make trajectory predictions
based on new–unseen–trajectory observations following the steps given in Algo-
rithm 4. This algorithm demonstrates how new observations can be added to
the training feature dataset F repeatedly to inform the model’s predictions with
the most recent observations. This is done solely by recomputing the covariance
matrices K, K∗, and K∗∗ based on these observations, without re-training the
model parameters. The input feature matrix for the prediction, F∗, is simply
created by appending the desired future time points [h1,h2,...] to the most re-
cent observation (ti, xi), appending the resulting vector into the feature matrix
as rows. The final feature matrix’s first and second columns are then ti and xi

for all rows, and its last column is a series of points representing the prediction
horizon [0, h1, h2, ..., hmax]T . The predictive distribution computed by the GP
for this input feature matrix will then represent the distribution of the possible
trajectories that the agent will take following the point (ti, xi) and will have the
form

[
(ti + hj , xj)

]
, where j indexes the rows of the feature matrix.

Since the GPR generates a predictive distribution over a set of trajectories,
it can be used to measure the quality of fit of a recently observed trajectory
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segment to this distribution based on the previous observations. If an observed
segment lies outside the confidence bounds of the current distribution, then
it means that this segment either represents a new major routine variation,
or it is a previously observed routine with a minor variation but the model’s
noise parameter cannot handle this level of variation well-enough yet. This
observation can be used to create triggers to tell the system that it likely needs
more training based on the newly acquired data, and is a first glance at how
the proposed method can be used for “lifelong learning” purposes after it’s been
deployed in an environment. Even though this feature of GPR is not made use
of during the experiments within the scope of this thesis, a pseudo-code on how
this can be done is given in Algorithm 5 for the sake of completeness.

Algorithm 3 Feature space transformation subroutine

Require:
Raw snippet R =

{
(tr0, xr0), (tr1, xr1), ..., (trn, xrn)

}
Down-sampled snippet S =

{
(t0, x0), (t1, x1), ..., (tk, xk)

}
Prediction horizon hmax < trn
Horizon time quantization htq

Horizon position quantization hxq

Ensure:
A set of features F and labels X for training and inference

0: procedure FeaturizeSnippet(S,R, hmax, htq, hxq)
1: F ← { } ▷ Features from snippet S
2: X ← { } ▷ Labels from snippet S
3: for i ∈ [0, ..., k] do
4: F ← F ∪ {(ti, xi, 0)}
5: X ← X ∪ {xi}
6: tlast = ti
7: xlast = xi

8: j = Index(Where(S[i] == R[·]))
9: while td < hmax do ▷ Iterate over the raw trajectory

10: j = j + 1
11: td = trj − tlast
12: xd = xrj − xlast

13: if (td > htq) OR (xd > hxq) then
14: F ← F ∪ {(trj , xrj , td)}
15: X ← X ∪ {xrj}
16: tlast = trj
17: xlast = xrj

18: return (F,X)
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Algorithm 4 Predicting trajectories given a GPR

Require:
Timeseries data stream TS(t)→ x
Desired prediction horizon hmax

GP parameters (σ2
n, ls, σ)

Past featurized observations F
0: procedure PredictTrajectory(GP,F , hmax)
1: F∗ ← { }
2: for each data point (ti, xi) in data stream do
3: F ← F ∪ {(ti, xi, 0)} ▷ Add latest observation to data tensors
4: F∗ ← {(ti, xi, 0), (ti, xi, h1), (ti, xi, h2), ..., (ti, xi, hmax)}
5: Recompute K,K∗,K∗∗ using F and F∗

6: P
(
x∗|F∗,

(
F , (σ2

n, ls, σ)
))
← GP(·)

7: Tpred ←
[
(ti + 0, µx∗|ti,xi,0), ... , (ti + hmax, µx∗|ti,xi,hmax

)
]

Algorithm 5 Lifelong learning for the proposed GPR approach

Require:
Timeseries data stream TS(t)→ x
Prediction horizon hmax

GP parameters (σ2
n, ls, σ)

Past featurized observations F
0: while forever do
1: S ← {} ▷ Current trajectory segment
2: while current segment not over do
3: for each data point (ti, xi) in current segment data stream do
4: S ← S ∪ (ti, xi)
5: (P, Tpred)← PredictTrajectory(GP,F , hmax)
6: if S out of confidence bounds of P then
7: re-train ← true
8: D ← D ∪ S
9: if re-train then

10: do in parallel

11: LearnKernelParameters(D)

12: re-train ← false
13: continue

5.3 Proof of Concept Experiments using Synthesized Data

The GPR backbone of behavior modeling and prediction framework described
throughout this section was implemented using GPyTorch open-source library
[38]. First, an initial prototype was created to prove the functionality of the
concept using synthesized data. This data composed of several 2D routine tra-
jectories with major variations, which were generated using linear interpolation
between a series of arbitrarily defined “keypoints,” which represented the main
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Figure 12: Demonstration of predicted trajectories and the probability
heatmaps associated with the predicted position at the end of the current pre-
diction horizon. The Gaussian process model parameters were learned and the
covariance matrix K was computed based on previously observed trajectories.
The “current trajectory” was not seen during training. Top: The agent is at
an intersection and the model cannot decide which direction the agent will go
and makes the average prediction of the two options. Bottom: Once the agent
starts moving one way from the intersection, the model then immediately figures
out which routine the current trajectory belongs to and corrects its prediction.
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activity regions. These hand-crafted keypoints were designed to provide a deeper
understanding of how the proposed modeling approach would behave in various
scenarios. The interpolation between these points represented the mobility be-
havior between activities. A Gaussian noise was added on these trajectories to
replicate minor variation sources, such as sensor noise. Additionally, each rou-
tine trajectory was regenerated multiple times with activity noise to simulate
further minor routine variations. This noise was based on hand-crafted rules
which incorporated randomness, and would manipulate (1) the agent’s velocity
between two consecutive keypoints, (2) the time that the agent spends on a cer-
tain keypoint, and (3) the time at which the agent arrives at a keypoint. These
trajectories were used to train the GPR model, while other similarly generated
trajectories were used to create and evaluate trajectory predictions. Figure 12
demonstrates probability heatmaps associated with the predicted future posi-
tion of an agent in a 2D space. I.e.,

p
(

(tnow, xnow+td , ynow+td) = (x, y)
∣∣F∗,F ,GP

)
(22)

along with predicted trajectories that would get the agent there

E
[
P |F∗,F ,GP

]
,∀td ∈ [0, thorizon] (23)

The analysis and observations from these experiments show that the model
prototype is able to model both the minor and major variations in the routine
trajectories. Possibly the most critical key takeaway from these experiments is
the model’s ability to distinguish between two routines. Figure 12-top demon-
strates the agent at an intersection between two possible trajectories observed
in the training data. At this moment, the model is not able to figure out which
way the agent is going to go next, as expected. However, once a signal is received
from the agent to indicate either one of the possible routes it can take in the form
of a slight movement toward one of the routes, then the model can successfully
predict the rest of this trajectory as demonstrated in Figure 12-bottom.

5.4 Proof of Concept Experiments using Motion Capture
Data

As the next step for the proof of concept studies, real-life human motion data
was used. Among several possible options to acquire human position data–such
as using the robot’s sensors or using an RGB-D-based pose estimation system–a
motion capture system (MoCap) was chosen. This decision was based on MoCap
systems’ being significantly more precise and robust against lighting variations
and occlusions, as well as their ability to provide higher “frame rates.” The
data acquisition environment, demonstrated in Figure 13, was set up using two
HTC VIVE Pro virtual reality base stations and an HTC VIVE Tracker 3.0 [26].
The tracker was attached to a belt worn by the human during the experiments,
and the 6-DoF pose information of the tracker was streamed to a computer
using SteamVR and OpenVR API. This stream is used for real-time tracking,
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Figure 13: Left: The trajectory and the heading tracked by the motion capture
system displayed in real-time. Right: Real-life in the meantime.

behavior modeling, and predictions as well as logging the data locally for later
analyses.

Figure 14 shows the real-time predicted trajectories of a human wearing
the MoCap belt and moving around the lab space on trajectories similar to
previously observed ones2. In this example, the human followed three distinct
patterns: (1) make a full counterclockwise rotation around the room (CCW), (2)
start moving clockwise into an intersection, take a short pause, and finish the
rotation counterclockwise (CW-Pause-CCW), and (3) start moving clockwise
into the intersection, take a long pause, and finish the rotation clockwise (CW-
LongPause-CW). In Figure 14(b), the model immediately predicts that this is
a counterclockwise pattern once the human starts moving counterclockwise. In
Figure 14(c), the human follows a clockwise path, makes it to the intersection
point, and takes a pause. Once they start moving counterclockwise, the model
can then predict that the rest of this pattern will be counterclockwise. In
Figure 14(d), the human follows the same clockwise path into the intersection
but this time takes a longer pause. The model correctly predicts based on
the pause duration–even before the human starts moving–that this pattern will
finish with a clockwise movement. Each trajectory in this example took between
28 and 42 seconds, and the prediction horizon was 30 seconds. Note that the
proposed model was shown to be able to handle much longer predictions (>400
s) in later experiments (Figures 18).

2Code and video demonstrations are available at github.com/terzioglan/

GPTrajectoryPrediction
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Figure 14: Demonstration of real-time trajectory prediction using the MoCap
system. (a)Three trajectories following different path patterns are used to learn
the Gaussian process parameters. (b-d)The proposed model was able to un-
tangle these variations and make correct predictions for all three movement
patterns in previously unseen trajectories.

The trajectory predictions on the MoCap data stream were performed at
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100 Hz, which was the refresh rate of the tracker cameras (i.e., “Vive Base Sta-
tions”). The Gaussian process regression, covariance-matrix computation for
each incoming data segment, and visualization of logged data and predictions
were handled simultaneously with the prediction computation on separate pro-
cessing threads running on an ordinary desktop computer equipped with an
NVIDIA GeForce RTX4060Ti 8GB GPU. This same system was later used in
the summative evaluation user studies (Section 6), in which the robot learned
the participants’ movement patterns within an artificial office space and moved
proactively to engage in snack/drink recommendation interactions following the
system structure presented earlier in Figure 8. Data collected during pilot stud-
ies with this system were also used to compute robot interaction poses that
formed jointly-focused F-formations [71, 112, 72, 25, 73] with the human and
the target item for delivering recommendations.

6 Summative Evaluation Study

To evaluate the effectiveness of the proposed trajectory prediction-based proac-
tive robotic intervention framework, we designed a within-subjects user study
and a simulated office environment (Figure 15). In this environment, the par-
ticipants were prompted to imagine that this was their own office space, where
their employer had deployed a robot to “accompany employees” during daily
activities. Any further information regarding the robot’s function was withheld
from the participants until the study concluded. Each participant was asked
to simulate 10 days of office activities within this space following a variety of
schedules that they wrote on small cards before beginning to simulate their
days. Through 5 of these 10 days, the robot’s behavior was Reactive, which
were the Control condition trials for this experiment; and in the other 5, the
robot’s behavior was Proactive, which served as the intervention condition trials
(Section 6.5).

Figure 15: The simulated office environment used in the summative evaluation
studies. The colored regions depict different “rooms” defined in this office.
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6.1 Simulated Office Environment

The office space consisted of five regions, namely Work Area, Rest Area, Snack
Pantry, Drink Pantry, and Front Desk. Participants were assigned a variety of
tasks across each of these regions. Figure 16 shows the full layout of the office
and its regions.

Figure 16: The layout of the simulated office environment.

The Work Area included of a desk, a chair, a laptop computer, and ten
bundles of five curricula vitae (CVs). In this area, participants completed two
work-related tasks: For Work 1 task, participants selected a candidate from
one of the CV bundles that matched a provided job description. As the second
work task, Work 2, they wrote a short sentence on the computer explaining
their reasoning for selecting the candidate. Each of these two tasks had to be
completed once each day in the correct order, but they were not required to be
completed consecutively.

The Rest Area was decorated with a chair. In this area, the participants’
task was to Rest by taking a seat, starting a one-minute timer on their phone
as a reminder for the end of their “break,” and spending this time however they
would like to.

The Snack Pantry contained a shelf with various healthy and unhealthy
snacks (e.g., dried berries, candy bars), empty baskets, and a log book. In this
region, as the Snack task, the participants were asked to “take a look at the
snacks and imagine” what they would get if they were currently in the office
looking for a snack, grab the snack and place it in an empty basket, and log the
snack they just got on the logbook.

The Drink Pantry had the identical structure to the Snack Pantry, except
that it contained healthy and unhealthy drink items (e.g., sparkling mineral
water, soda). The Drink task was also identical to the Snack task, except that
participants chose a drink instead.
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The Front Desk featured a computer on a standing desk, and this region
was where each day began and ended. At the end of each day, the participants
reported their experience with the robot for the corresponding day through a
survey (Section 6.6) displayed on the computer screen as their Check-out task.
Once the Check-out task was completed, the participants then clicked through
the survey to be prompted to start their next day and picked any one of the
schedule cards they created earlier to follow during their upcoming day. This
procedure of starting a new simulated day was coded as the Check-in task.

While creating their schedules, participants were instructed that each day
should begin with a Check-in and end with a Check-out. They were also in-
structed that each day must contain single instances of Work 1 and Work 2,
and they could schedule the remaining three tasks–Rest, Snack, and Drink–as
many times as they pleased. Initially, they were asked to imagine what a typical
work day would look like for them to fill out their first schedule. Afterwards,
they were asked if they could imagine any variations of this routine based on
their experience, and asked to fill as many additional schedule cards as they
wished.

6.2 Data Acquisition and Processing

During the experiments, participants and the robot wore belts that carried a
motion tracking marker (HTC VIVE Tracker (3.0)). The system acquired 6D
pose information from both of these trackers at a 100 Hz sampling rate during
the session, and logged them locally along with a timestamp for each acquired
sample. The 3D pose information (x-y coordinates and orientation) for the
robot’s tracker was used to drive the robot around the office space between
different regions of interest autonomously. The 2D position information (x-y
coordinates) from the participant’s tracker and the associated timestamps were
used to train the GPR model, as well as make real-time trajectory predictions
at 10 Hz during the sessions.

Following the scheme demonstrated in Figure 8, each observed participant
trajectory was snipped into “daily” trajectory segments at the transition from
a Check-out task to a Check-in task at the end of each day. Figure 17 shows an
example of 10 days of trajectory data collected in the simulated office environ-
ment, along with the defined activity regions within the laboratory space.

6.3 Task Assignment and Activity Recognition

For the user study sessions, the robot was assigned with the task of delivering
a healthy option recommendation during Snack and Drink activities (Figure 8-
“Task Assignment”). The instantaneous nature of such health-related decision
making activities makes them highly relevant to the goals of an opportunistic
health intervention system: To intervene at the time and place a health-related
decision is being made. Such interventions–referred to as “stimulus control”–
are shown to be the one of the most effective ways to facilitate health behavior
change, [99]. To simulate a hypothetical activity recognition tool to suit the
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Figure 17: An example 10-day trajectory data in the simulated office study.
These trajectories span approximately 58 minutes of total duration. The boxes
represent the activity regions defined in the office. Note that this is only a 2D
projection of the otherwise 3D observation space, whose third axis is the time.
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purpose and the scope of our studies, and follow the scheme demonstrated in
Figure 8, we leveraged time and coordinate-based bounding boxes around the
activity regions. These spatiotemporal bounding boxes were used to label the
intersecting sections of the current or predicted time series position trajectories
with the associated activities. If an observed or predicted trajectory intersected
with one or more of these bounding boxes for at least 3 seconds, than those
activities were referred to as being “recognized” in the corresponding trajectory.

6.4 Model Training and Trajectory Prediction

For each participant, a new GPR model was trained from scratch during their
experiment session. Depending on the current size of the data tensors–which
varied from day to day as well as from user to user–the training cycles took
around 5 to 20 seconds and were run on an NVIDIA GeForce RTX 4060 Ti 8
GB GPU.

Although re-training the model after each simulated day would have yielded
better representations of the routine trajectories, we refrained from doing so in
order to save crucial seconds spent during training–possibly minutes in total–and
maximize the utility from the duration of the study sessions. For this purpose,
the GPR model was only re-trained if the participant exhibited a previously
unseen daily routine. These routines were detected by a helper algorithm that
checked the bounding boxes for all 7 activities throughout the current day, and
computed the current routine as a sequence of activities. If the sequence of ac-
tivities during any given day had not been previously demonstrated by the par-
ticipant, than that day’s trajectory was tagged as a training trajectory. At the
end of such a day, the system featurized this trajectory following Algorithm 3,
added these new features and labels to the model tensors, and re-trained the
model.

The trajectory featurization process inherited a downsampling step in order
to keep the model tensor size from growing beyond computational limits (Al-
gorithm 2). This downsampling was performed using equidistant regimes in all
feature axes, t, x, y, h. Every consecutive point with 50 centimeters or 15 sec-
onds separation in between–whichever came first–were selected as key feature
point, (ti, xi, yi), from the original trajectory. Then, following the trajectory
from each of these key feature points over a 2-minute horizon and sampling
more points to populate the data points across the horizon axis using the same
equidistant regime, the 4D feature matrix and the 2D label matrix was generated
as demonstrated in Equations 14,19, and 20. Although the proposed trajectory
prediction method does not impose a strict upper limit on the prediction horizon
(as long as the number of sampled data points remained tractable), a 2-minute
prediction horizon was found to be sufficiently long during pilot experiments for
our study’s purposes.

In order to make trajectory predictions, new feature matrices for the current
day’s trajectory were generated and added to the model’s tensors as exemplified
in Equation 16 and Algorithm 4 periodically. To control the tensor size growth,
only the last 20 seconds of trajectory history was retained in the model tensors.

52



The model tensor was updated at 1 Hz and the trajectory predictions were
generated at approximately 10 Hz. Intersections of the predicted trajectories
with the spatiotemporal bounding boxes of the activities were then computed,
and the “persistent” intersections were output as predicted activities by the
system. This output consisted of the activity’s name, when it will take place
relative to the current time, and the duration it will last for. The “persistence” in
this context was defined as the same activity being recognized within the same
time window several times consecutively (N = 30 used for the experiments).
Example 400-second-long trajectory predictions and corresponding recognized
activity time windows are demonstrated Figure 18.

6.5 Robot Behavior

During the experiments, we used the mobile humanoid robot platform Pepper
(Figure 1; [107]). The two levels of the within-subjects robot behavior manipula-
tion were Reactive and Proactive. The Reactive robot acted only after detecting
that the participant was currently engaged in one of the target activities–either
Snack or Drink–for at least the past 3 seconds. The Proactive robot acted only
upon predicting, at least 40 seconds in advance, that the participant will be
engaged in a target activity for at least 3 seconds.

In either condition, once the robot was triggered to act and attempt to deliver
a Snack or Drink intervention, it autonomously navigated to the associated
activity region. If the robot was able to join with the participant at the target
task location before the participant picked up a snack or drink item from the
shelves, it was then triggered to deliver the intervention. At this time, the
system selected a random healthy option from the inventory, and the robot
uttered a pre-scripted propositional statement recommending the participant
to consider getting the proposed item, accompanied by a supporting health
benefit argument (e.g., “What about a banana? Bananas provide potassium to
help your kidneys and heart function properly.”). If the robot failed to meet
with the participant at the target task location before the participant picked up
an item, then the system sent it either back to the home position or to the next
predicted target task location without uttering any statements. During idle
periods in both conditions, the robot remained stationary in its home position
next to the work desk (Figure 16) while running idle animations, and it did not
interact with the participant.

During 5 of the 10 simulated days in the office, the robot’s behavior was set
to be Reactive; and during the other 5, it was set to be Proactive. The first
day for each participant was considered an acclimation day where they got used
to the tasks and following the schedule cards. This day’s trajectory data was
not used for training the GPR trajectory prediction model, and the robot was
set to Reactive condition. The second day’s data was used as the first training
data for the Proactive robot, and the robot’s behavior was again set to Reactive
since the system was not able to make trajectory predictions yet. The system
was able to make trajectory predictions for the remaining 8 days. These days
were randomly assigned to either Proactive or Reactive conditions, making sure

53



that the total day count for each condition summed up to 5.
During the experiments, the experimenter observed the session from a differ-

ent room. Before starting a navigation task, the system required confirmation
from the experimenter as an added safety measure. Once a navigation task
to a target activity region was completed, the system asked the experimenter
for confirmation of whether to deliver the intervention utterance or not. The
experimenter either confirmed the request if the participant was in the activity
region and had not picked an item yet, and rejected it otherwise. During the
Proactive days, the experimenter postponed responding to an utterance request
for as long as the current target task was still being predicted to happen by the
system or until the participant showed up at the intervention region. If the task
was no longer being predicted and the participant still did not show up, then
the experimenter rejected the utterance request. If the participant showed up
in the task region and joined with the robot while the activity was still in the
prediction scope, then the experimenter confirmed the utterance request, and
the intervention was delivered. This intervention delivery trigger was originally
designed to be handled autonomously by using face detection capabilities of the
Pepper robot. However, during the pilot studies, it was decided that this capa-
bility was not reliable enough to guarantee high repeatability across intervention
attempts, and the aforementioned manual triggering approach was adopted to
prevent confounding effects.

6.6 Measures

The primary outcome for the user studies was the Intervention Success, which
was measured at two levels: True or False for each intervention attempt. During
an intervention attempt, if the robot was able to meet the participant to deliver
the recommendation utterance before the participant already picked up a snack
or drink item, then this intervention was considered successful. Additionally, at
the end of each day during the Check-out task, the participants responded to
three Likert scale survey questions to rate their perception of the robot in the
past day. These questions were single-item scales selected from the three sub-
scales of the Robot Social Attributes Scale [21], namely Warmth, Competence,
and Discomfort. The selected scales were Social, Competent, and Awkward.
We preferred to use only a subset of the full scale in order to mitigate the
survey fatigue since each participant completed this survey ten times during a
single session. Moreover, we scored the snack and drink items with -1 for each
unhealthy item and +1 for each healthy item, and computed snack, drink, and
total basket scores for each day. We also counted the total number of healthy
and unhealthy items in the baskets for each day. During the exit interviews,
the participants were asked for their preference between the Reactive and the
Predictive robot. The interviews were transcribed and coded for analysis.
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6.7 Offline Validation

After the experiments were completed, the logged trajectory data from the
sessions were used for prediction success evaluations. For these evaluations, the
system’s task assignment was to predict every occurrence of all 7 activities in
each day. Among these 7, Work 1, Work 2, Check-in, and Check-out occurred
at most once each day, whereas Drink, Snack, and Rest could occur multiple
times. Spatiotemporal bounding boxes for each of these activities were made
available to the system as “recognition” parameters.

Using the routine detection helper algorithm (Section 6.3), ground truth ac-
tivity sequences for each day were computed. The days where each novel routine
sequence occurred for the first time for each participant were selected as training
data segments for the corresponding participant. If a detected routine occurred
only once throughout the 10 days for a participant, then that data segment was
discarded and was neither used for training nor testing. The remaining data
segments were used as testing dataset for the corresponding participant.

A GPR model was trained from scratch for each participant using the tra-
jectories in the training set. Then, for each day segment in the testing set, the
model made trajectory predictions over a 2-minute horizon every 10 milliseconds
throughout the day. Each trajectory prediction was checked for intersections
with the spatiotemporal bounding boxes of every activity, and the recognized
activities were inserted to a data structure containing the sequence of predicted
activities sorted by their predicted onset time within the day. The identical
consecutive predicted activities in this data structure were later aggregated into
a single prediction if their predicted time windows overlapped with one another.
If there was no overlap in the predicted time windows, then these predicted ac-
tivities were treated as different instances of the same activity being predicted,
and no aggregation was performed.

The resulting sequence of activities at the end of a day was coded into
“sentences” composed of single-letter “words”. For example, if the predicted
activity sequence in a day was “Check-in→ Drink→ Work 1→ Snack→ Work
2→ Check-out”, this was coded into “C D W S W C”. This resulting pre-
dicted sequence sentence was then compared to the ground truth sequence for
the corresponding day using the ROUGE-L metric [82]. Additionally, for each
predicted sequence, we generated 1000 random sequences of equal length and
scored them using the same metric. The averages of these random scores were
compared to the predicted sequence scores using paired samples t-test.

The proposed GPR model’s trajectory predictions are expected to become
more refined as the day progresses–especially for the cases such as the one exem-
plified in Figure 18-b,c. In order to evaluate the effects of the current trajectory
history on the activity sequence prediction success, several aggregate sequence
predictions were collected beginning at different time points throughout each
test day. These time points, T0, T1, T2, ..., TN , were defined as the timings
where the current trajectory transitioned into a new activity region at each new
test day. To clarify, the T0 prediction sequence is collected starting right at the
beginning of a day when the current position is within the spatial boundaries of
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the first activity region. Once the current position moved into the second activ-
ity region, a new sorted activity sequence data structure, T1, was created and
populated with predictions through the rest of the day alongside T0 predictions.
In these settings, for the example sequence given above where the ground truth
for T0 is “C D W S W C,” the ground truth sequences for T1 and T2 are “D
W S W C” and “W S W C,” respectively. All of these sub-sequence predictions
were evaluated and compared to random sequences of equal length separately.

6.8 Study Procedure

We recruited participants from a social media platform internal to our institu-
tion as well as through word of mouth within the surrounding laboratories. The
participants were required to be at least 18 years old and proficient in spoken
and written English. The study was approved by our institution’s IRB, and
the participants were compensated for their time. Experiment sessions took
approximately 90 minutes and were video- and audio-recorded.

Upon arriving at our laboratory, the participants were briefly introduced to
the study and consented. Upon consent, the participants completed a sociode-
mographic survey and a robot attitude survey [21]. The participants were then
led to the simulated office room and were given a detailed briefing about the
experimental tasks. During the briefing, the robot was turned on, running idle
animations in its home position, and it did not interact with the participant.
Once the briefing was complete, the participants filled out as many routine cards
as they wished. After the participant finished filling out their routine cards, the
experimenter prompted them to start with their first day and left the room.
Once the participants were done with their 10 days of activity simulation, they
left the room to meet the experimenter and then completed a post-experiment
survey. Finally, the participants were interviewed about their experience and
debriefed.

7 Results

We recruited 15 participants for this study (8 male, 7 female) between ages
20-37 (Median = 34,Mean = 30.7, SD = 5.1). 7 participants had no prior
experience with any kind of robot. 3 participants have previously interacted
with a social robot and 4 participants previously worked with an industrial
robot manipulator. The survey data from one session was excluded from the
analysis because the study log containing the mapping between the day number
and trial condition was lost during file export due to a runtime error. Trajectory
data acquisition from all 15 sessions was completed successfully.

In total, these sessions yielded 150 simulated days and 1191 activities within
the simulated office. Among these 1191 activities, 410 were Snack and Drink
tasks, which were the intervention opportunities for the robotic system. The
Reactive robot had 211 total opportunities, and the Proactive robot had 199
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Figure 18: (a)Demonstrations of observed minor and major routine variations in
the collected data and spatiotemporal activity windows. (b-e)400-second-long
predicted trajectories during previously unseen days. (c-e)Predicted activity
windows. Note that these plots demonstrate only a single 2D snapshot from
the underlying 6D inference problem for observational simplicity. In (b), the
model is yet uncertain whether the user will advance towards Rest or Work
activities and follow the associated routine. Once the trajectory takes a turn
indicating either routine, then the remainder of the trajectory as well as the
routine sequence can be successfully predicted (c, d).
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total opportunities during the sessions. 75 of the 150 simulated days was with
the Reactive robot and the other 75 were with the Proactive robot.

For the offline validations, 150 days of trajectories were analyzed in indi-
vidual clusters per participant, and the activity sequences were extracted. The
activity sequences in 15 days were observed only once during the corresponding
participant’s session, and were discarded from offline validation dataset. The
remaining data segments yielded 34 days of training data in total. Each partici-
pant’s GPR model was trained using 2 to 3 days of data from their own sessions.
The total number of test segments for all participants summed up to 101 days.

In Figure 19, a breakdown of the number of routines defined by each par-
ticipant and the number of routines executed by each participant are given.
Although all participants defined 2 to 3 routines, during the sessions, 2 to 5
different routines were executed by the participants. This was primarily due
to participants getting confused while following the routine cards and either
failing to remember which was the last activity they did, confusing the or-
der of Drink and Snack they had on their cards, or confusing the locations
of these tasks within the lab space. Each participant completed 6 to 10 ac-
tivities per day, Figure 20, and each day took about 7 minutes on average
(M = 392s, SD = 103s,min = 190s,max = 668s), Figure 21.

Figure 19: Participants defined 2 to 3 routines and executed 2 to 5 different
routines during the sessions. Even though they followed the cards with their
day’s routines written on them, the participants sometimes forgot which step
they were at or confused the order of Snack and Drink tasks.

7.1 Primary Outcome

The primary outcome from this study was the number of successful interventions
based on the robot behavior condition. Each day, both Reactive and Proactive
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Figure 20: Participants engaged in 6 to 10 activities per day.

Figure 21: A simulated day took 392 seconds in average. The shortest day took
190 seconds and the longest day took 668 seconds. The durations of the days
varied from day-to-day, routine-to-routine, as well as participant-to-participant.

robots attempted to address one or more intervention opportunities. Figure 22
shows a breakdown of these attempts by the robot condition.

The Reactive robot had a total of 211 intervention opportunities. It suc-
cessfully delivered an intervention in 8 of these opportunities. In 141 of them,
the Reactive robot failed to make it to the intervention location in time. The
remaining 62 opportunities were “skipped” by this robot. These were the op-
portunities when the reactive robot was busy navigating to another point of
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Figure 22: The breakdown of intervention opportunities per robot condition.
The Reactive robot failed on the majority of its intervention attempts, and the
Proactive robot was successful in the majority its attempts.

interest in the office space, which was either the Snack or Drink zone, or its
home position to where both robots returned if there currently were no open
intervention opportunities.

The Proactive robot had a total of 199 intervention opportunities. It suc-
cessfully delivered a total of 107 Snack and Drink interventions. 27 of the 199
opportunities were failed to be addressed by the Proactive robot. These failures
predominantly occurred during the days where the participant was demonstrat-
ing a new routine for the first time. During 2 trials, the robot’s collision avoid-
ance algorithm blocked the robot erroneously, which resulted in the Proactive
robot to arrive at the zone late, and the intervention attempt to fail. 65 trials
were skipped by the Proactive robot due to multiple reasons: (1) The robot
was in transit to another point of interest in the office when the intervention
opportunity was predicted and it was too late to act by the time the current
navigation was completed, (2) The system failed to predict the opportunity, (3)
The opportunity was predicted to happen in less than 40 seconds which causes
the system to not act on the opportunity (Section 6.5).

The number of successful interventions per day (Median = 1,Mean =
0.82(SD = 0.93),min = 0,max = 3) condition was analyzed using Mann-
Whitney U test based on robot behavior condition. The analysis showed that
the Proactive robot delivered significantly more successful interventions com-
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pared to the Reactive robot (U = 292.5, n1 = n2 = 70, p < .0001, two-tailed).
Overall, the Proactive robot was able to deliver a successful intervention in
79.85% of the attempted opportunities, and the Reactive robot’s success rate
was 5.37% for its attempts.

7.2 Secondary Outcomes

7.2.1 Perceived Social Attributes

The first group of secondary outcomes included single-item questions from the
sub-scales of the Robotic Social Attributes Scale [21]. These items were Social,
Capable, and Awkward. In order to investigate possible novelty effects, these
scales were analyzed in conjunction with the day number. Additionally, to
investigate possible carryover effects, these scales were also analyzed based on
whether the response was collected before or after the first successful robot
intervention. The responses to these scales were first transformed using Aligned
Rank Transform (ART) [140] to make the data compatible with the intended
analysis method. Then, a factorial analysis of variance (ANOVA) was conducted
on these two sets of transformed data.

These analyses have shown that the Proactive robot was perceived as signif-
icantly more capable (F (1, 139) = 28.159, p < .0001), significantly more social
(F (1, 139) = 22.996, p < .0001), and marginally less awkward (F (1, 139) =
3.393, p = .068) than the Reactive robot. The robot was perceived as sig-
nificantly more capable as the days went by (F (1, 139) = 2.194, p = 0.027).
There were no significant effects of the day number on the Social (F (1, 139) =
1.677, p = .102) nor on the Awkward (F (1, 139) = 0.874, p = .550) scores. The
analysis did not show any significant interactions between the robot condition
and the day number. The raw–non-transformed–measurements from the social
attributes scale by robot condition and day number are demonstrated in the
regression plots in Figure 23.

The analyses on the second set of transformed data have shown that the
robot was perceived as significantly more capable (F (1, 139) = 7.168, p = .008)
and significantly more social (F (1, 139) = 5.587, p = .020) after the first success-
ful intervention. The timing of the measurement did not have any significant
effect on the perceived awkwardness of the robot (F (1, 139) = 1.604, p = .207).
No significant interactions were found between the robot condition and the mea-
surement timing on the social attribute measures.

7.2.2 Snack and Drink Quality

The robot condition’s effect as well as the timing of the measurement–whether
it was before or after the first intervention–on meal item quality were analyzed
using Mann-Whitney U test for scale variables; and chi-squared test for categor-
ical variables. The analyses have shown that participants included significantly
fewer unhealthy items in their daily baskets under the Proactive robot condi-
tion (U = 1922.5, n1 = n2 = 70, p = .016, two-tailed). There were no significant
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Figure 23: Social attributes scores by day and the robot condition.

effects of the robot condition on number of healthy items (U = 2235.0, n1 =
n2 = 70, p = .353, two-tailed), daily basket score (U = 2116.5, n1 = n2 =
70, p = .157, two-tailed), snack (U = 2149.5, n1 = n2 = 70, p = .197, two-tailed),
nor drink (U = 2323.0, n1 = n2 = 70, p = .583, two-tailed) scores. The chi-
squared tests revealed a marginal correlation between the robot condition and
the basket containing at least one healthy food item, in favor of the Proac-
tive robot (χ2(1) = 3.739, p = .053). No such correlation was found between
the robot condition and the basket containing at least one healthy drink item
(χ2(1) = 1.346, p = .246).

The meal quality metrics were primarily affected by whether the first suc-
cessful intervention was delivered or not. Participants included significantly
more healthy items (U = 1419.0, n1 = 35, n2 = 105, p = .037, two-tailed),
and significantly fewer unhealthy items (U = 1296.5, n1 = 35, n2 = 105, p =
.004, two-tailed) in their baskets after the first successful robot intervention.
Similarly, the basket scores (U = 1355.0, n1 = 35, n2 = 105, p = .018, two-tailed),
snack scores (U = 1422.0, n1 = 35, n2 = 105, p = .039, two-tailed), and drink
scores (U = 1500.5, n1 = 35, n2 = 105, p = .092, two-tailed) were higher after
the first successful intervention. The participants were more likely to include
at least one healthy drink item (χ2(1) = 3.191, p = .074) and a snack item
(χ2(1) = 7.179, p = .007) in their baskets in the days following the first success-
ful intervention.

7.2.3 Compliance versus Snack and Drink Quality

In order to confirm whether complying with the robot’s recommendations actu-
ally improved the snack and drink quality scores, an additional analysis was per-
formed. The “compliance” was coded as True in the trials where the participant
included the recommended item in their corresponding baskets, and False oth-
erwise. The analyses have shown that complying with a recommendation signif-
icantly increased the number of healthy items (U = 102.5, n1 = 14, n2 = 58, p <
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.0001, two-tailed) and significantly decreased the number of unhealthy items
(U = 242.0, n1 = 14, n2 = 58, p = .008, two-tailed) in the baskets. Additionally,
overall basket scores (U = 121.0, n1 = 14, n2 = 58, p < .0001, two-tailed) as well
as the snack scores (U = 129.0, n1 = 14, n2 = 58, p < .0001, two-tailed) were
significantly improved by complying with the robot’s recommendations. No
such improvement was found for drink scores (U = 314.0, n1 = 14, n2 = 58, p =
.172, two-tailed). The participants were significantly more likely to include at
least one healthy snack item (χ2(1) = 23.533, p < .0001) and marginally more
likely to include at least one healthy drink item (χ2(1) = 2.937, p = .087) if they
complied with the robot’s recommendation.

7.2.4 Exit Interviews

During the exit interviews, the participants were asked for their preference for
either the Reactive or the Proactive robot. 14 out of 14 participants stated that
they would prefer to have the Proactive robot in their office space instead of
the Reactive robot. Participants explained this preference as being due to the
Reactive robot being “too late” and the participants having “already” decided
what to pick before the robot arrived, or the participants having to “wait” for the
Reactive robot to arrive at the intervention location. Two participants stated a
nuanced preference over the different robot behaviors depending on whether the
robot was a “colleague”, in which case they had a stronger preference for the
Proactive robot; or a “pet”, in which case they had a preference for the Reactive
robot because the robot, behaving this way and following them around, was
perceived to be “cute”.

7.3 Offline Validation Results

The trajectory data collected from all 15 participants was used in the offline
validation studies. These trajectories contained 1191 activities in total, all of
which were assigned as a target task to the system and were attempted to be
predicted by the system. The GPR model was trained from scratch for each
participant using the first occurrence of each unique routine as training data,
and the rest of the days as testing data for the associated participant. The
same training and prediction parameters used during the sessions (Section 6.4)
were used during offline validations. The only difference was that the data
tensors were updated with each trajectory sample at around 100 Hz instead of
1 Hz, since computation time wasn’t critical during offline predictions. With
every new sample, a new trajectory prediction was made, yielding approximately
100 predictions per second instead of ∼10 predictions per second–which was
the maximum rate that the system could keep up with during the experiment
sessions. This yielded approximately 5.5 million trajectory predictions in total
for all 15 participants.

Figure 24 shows the Rouge-L scores for each day in the test dataset overlaid
with a box plot to outline the distribution. A score of 1.0 indicates the ground
truth sequence was predicted perfectly. The mean scores of the predicted ac-

63



Figure 24: Rouge-L scores for the predicted activity sequences during offline
validation studies.

tivity sequences through all 9 timings (T0,T1,...) were 0.75 and the standard
deviation was 0.15. The sequence prediction score of the model was significantly
higher than random for all timings (paired samples t-test p < .00001, two-tailed).
The mean random scores decreased consistently through the timings. This is
because the length of the remaining ground truth sequence decreased by one
at each consecutive timing, while the number of possible activities to randomly
populate this sequence remained constant.

Mean prediction score remained relatively stable compared to random through-
out the timings. The spread of the prediction scores increased with the timing.
The increase in the spread can be attributed to two observations: If the partic-
ipant followed their routine with relatively small time variations compared to a
previously observed identical routine that was used for training, then the model
would refine and improve its predictions as it received more context about the
current routine as the day progressed. This resulted in more high-score predic-
tions in later timings. However, if this was not the case and a repetition of a
previously observed training routine had significant differences, then the model
would get more and more lost as the day progressed.

8 Discussion

The presented approach was shown to be able to successfully make 2-minute-
long trajectory predictions, which were then used to drive the robot around a
simulated office through simulated days which lasted several minutes. However,
it should be straightforward to extend these predictions over longer horizons in
longer routines that spanned hours–maybe days. As long as the scale of relative
variations between the output and the input signals remained comparable, the
exact model presented in this work can be used to make predictions in domains
with completely different time-scales. Moreover, the 2-minute horizon used
during the studies can be increased to be equal to the total duration of the
routines. The only reason that the prediction horizon was kept relatively short
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during the sessions was to keep the data tensors as small as possible, and not
risk running into memory issues during the studies.

An interesting finding from the summative evaluation study was the lack of
an impact of the robot condition on several meal quality metrics. One possi-
ble explanation for this might be the simplicity of +1/-1 scoring scheme (Sec-
tion 6.6), which was used to evaluate the meal quality. Combined with the rel-
atively small number of items picked from the shelves during each Snack/Drink
activity, this scoring scheme might have failed to achieve the necessary scoring
granularity at the trial level. Another possible explanation is that the carryover
effects were indeed strongly influencing the participants’ decisions following the
first successful intervention by the robot. Regarding this, two participants ex-
plicitly stated during the exit interviews that they felt the robot was asking
them to pick healthy items even when it was “staring” at them from across the
room without saying anything–which clearly did not happen during a successful
intervention trial. The perception of such mutual gaze due to the positioning
of the robot in its home position and there being no obstacles in the office to
break this gaze connection with the robot might have further strengthened the
carryover effects.

9 Limitations

The primary limitation of the trajectory prediction-based intervention system
presented in this thesis is its scalability. This system was implemented using an
exact GPR model, which is known to have strict limitations on the amount of
data that it can handle. If such a system were intended to be used in real-life
longitudinal settings, then this model would likely not be suitable to scale with
the possible varieties in the users’ routines through the weeks or months the
system was deployed for. The second limitation is with regard to the trajectory
prediction generated by the system and the lack of physical constraints that are
guiding these predictions. In the current state, the predicted trajectories might
go through physically impossible terrain (e.g., walls)causing infeasible outcomes
and possibly causing the loss of otherwise important context about the nature
of the behaviors. Third, even though the presented system was evaluated in
an environment with variations in the observed behaviors through the usage of
routine cards, the true stability or variability of real-life routines were probably
not reflected during the summative evaluation studies, and it still remains as
future work to verify whether real-life routines have similar characteristics to
the routines evaluated in this thesis.

The primary limitation regarding the experimental design of the summative
evaluation studies was due to convenience sampling. Even though this partici-
pant pool provided a sufficiently large dataset of activity sequences for the offline
validations, it was not large enough to reflect the behavioral characteristics and
the preferences of the general public. Moreover, the short duration of the one-
hour study inside a room with the robot was likely confounded with novelty
effects, and it is unclear if the advantage of the proactivity over reactive robot
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behavior would persist after the novelty effects have worn off in longitudinal
settings.

10 Conclusion

The work described in this manuscript aimed to push towards robot proactiv-
ity with a use case of in-situ opportunistic health interventions using a mobile
humanoid robot to deliver recommendations during a health-related decision-
making task. In an attempt to generalize the desiderata for such systems beyond
this initial case study, the overarching key aspects of such systems were identi-
fied as spatiotemporal causality, adaptability, proactivity, and generalizability.
Through the proposed approach, it has been shown that temporal causality can
be retained by the proposed feature space reconstruction method which makes
it possible to infer possible future positions based on the current and the past
observations (Sect. 5.1). By leveraging assumptions regarding the underlying
dynamics of the spatiotemporal system, which routine behavior is modeled as
through Gaussian processes, and making use of such model’s predictive power,
the proposed approach was useful with very small amounts of data–as small as
observations only from a single routine trajectory–making it highly adaptable
to different users and environments (Sect. 5.3). The ability to model and predict
routine behavioral trajectories combined with the proposed system architecture
as demonstrated in Figure 8 made it possible to render the robotic platform
to predict and act upon future activities of study participants and achieved
proactivity (Sect. 4.4). The capability of the proposed method and structure
to generalize to other task domains that incorporated some other form of time
series data was not discussed, and remains a part of future work.

The findings from the summative evaluation study (Section 6) have shown
that the proposed proactive system was significantly more successful in deliver-
ing successful interventions than a reactive system, which did not have predic-
tive capabilities. The proactive robot was found to be more social and capable,
and perceived as less awkward by the participants, and participants showed a
strong preference for the proactive robot. Even though the proactive behavior
had significant effects only on a small subset of the meal quality metrics, the
importance of delivering a successful intervention revealed itself as carryover ef-
fects (Section 7.2.2): The meal quality measurements were significantly higher
after delivering one successful intervention with the robot. This signified the im-
portance of being able to deliver successful interventions as such interactions led
the participants to become more aware and adjust their preferences accordingly
with this awareness.

11 Future Work

In the technical direction of the underlying approach, the future work should
investigate how such a framework can be deployed longitudinally in life-long
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learning settings, and be able to scale with the amount of data collected from
daily observations. If such a system were to be deployed for a very long time
period, using approximate GPR methods to handle the scalability of the rep-
resentation learning system would likely not be sufficient. Additionally, the
model would likely require additional algorithms to sample observations from
new behaviors and “forget” previously learned but no longer relevant contextual
connections between observations and behaviors.

A direction left for future work is demonstrating the generalizability of the
proposed system in other domains that involved continuous-time series data.
For example, the system can be further studied to model and predict biological
signals, or be used to model human-object interactions and object manipula-
tions.

A common property of any distribution is that it can be used to draw sam-
ples from. So, ideally, the learned representations in this work can be used to
synthesize context-rich data based on real observations by sampling trajectories
from the learned distribution. Such capability was out of the scope of this work.
Nonetheless, it might be an interesting future direction for more relevant studies
and applications.

Lastly, even though the connections between health behavior and spatiotem-
poral cues are shown by prior work in different contexts, it is necessary to con-
duct further studies specifically in human-robot health interactions to confirm
whether these connections are still reliable to create proactive health inter-
ventions using robots in real-life settings. Moreover, longitudinal studies are
necessary to confirm if such proactive intervention behaviors can retain their
relevance to the users and effectiveness over long periods of time.
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[34] Juan Fasola and Maja J Matarić. A socially assistive robot exercise coach
for the elderly. Journal of Human-Robot Interaction, 2(2):3–32, 2013.

[35] David Feil-Seifer and Maja J Matarić. Socially assistive robotics. IEEE
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